Measurement of Electroweak Vector Boson Pair Productions in pp Collision with the CMS Detector at LHC

Ajay Kumar, Delhi University

On behalf of the CMS Collaboration

Abstract

We present an overview of measurement of electroweak vector boson pair production, decaying to semileptonic and fully leptonic final states. The data analyzed were taken at $\sqrt{S} = 7 \& 8$ TeV by the CMS detector at the Large Hadron Collider.

- ➤ Test of the Standard Model at $\sqrt{s} = 7$ and 8 TeV
- > Sensitive to the self-interaction between gauge bosons via trilinear gauge couplings (TGC)- possible candle for new physics

Motivation

- > Background for high mass Higgs searches
- > Help to validate the reliability of the techniques used in the Higgs searches
- ➤ Understanding necessary for exploring WW Scattering

- **➤ Well identified and isolated leptons.**
- ➤ Significance of impact parameter (SIP_{3D}) < 4
- \geq Z leptons pair with, 60 < m_{Z1} < 120 GeV
- \triangleright Another pair of lepton (I⁺I⁻) with, 60 < m₂₂ < 120 GeV, if more than one Z2 pair, choose one with highest scalar sum P_T \triangleright Among four selected leptons, at least one have P_T 20GeV & another P_T > 10GeV
- ► Any opposite charge pair of leptons satisfy m_{II}, > 4GeV

- $>Z_1 \rightarrow I^+I^-$ with one lepton $P_T > 20$ GeV and other $P_T > 10$ GeV
- $>Z_2 \rightarrow \tau + \tau^-$, with τ decays to e, μ, τ_h , $P_T^{-1} > 10 \text{GeV & } P_T^{-\tau h} > 20 \text{GeV}$ >m_{z1} as above
- ho_{z2} m_{min} < visible mass ($m_{\tau\tau}$) < 90 GeV, where m_{min} is 20GeV for $Z_2 \rightarrow \tau\tau \rightarrow e\mu$ and 30GeV for all others.

Distribution of four-lepton reconstructed mass. The background shape are taken from data.

Decay	Cross-Section
μμμμ	σ(pp→ZZ)=7.3+0.8/-0.8(stat.)+0.6/-0.5(syst.)±0.4(theo.)±0.3(lum.)pb
eeee	$\sigma(pp \rightarrow ZZ) = 7.2 + 1.0 - 0.9(stat.) + 0.6 - 0.5(syst.) \pm 0.4(theo.) \pm 0.3(lum.) pb$
μμ ее	σ(pp→ZZ)=8.1+0.7/-0.6(stat.)+0.6/-0.5(syst.)±0.4(theo.)±0.3(lum.)pb
ΙΙττ	σ(pp→ZZ)=7.7+2.1/-1.9(stat.)+2.0/-1.8(syst.)±0.4(theo.)±0.3(lum.)pb
Total	σ(pp→ZZ)=7.7+0.5/-0.5(stat.)+0.5/-0.4(syst.)±0.4(theo.)±0.3(lum.)pb

ZZ-)lvlv

WW→Ivlv **Selection**

- \triangleright Only 2 high P_T (>20 GeV) isolated leptons (e or μ) with opposite charge
- > Require high missing transverse energy
- >Events with one or more jets surviving jet selection and with corrected E_T >30 GeV & $|\eta|$ <4.7 rejected
- ➤ Soft muon veto, b-jet veto on jets with 15<E_T < 30 GeV
- ➤ Projected E_T miss, this is the component of E_T transverse to the closest lepton if it is closer than $\pi/2$ in azimuthal angle, and full E_T^{miss}
- required to be >45 GeV for $e(\mu)^+e(\mu)^-$ & >20GeV for $e(\mu)^+e(\mu)^ > \Delta \Phi_{\text{(II,iet)}} < 165 \text{ degrees only in e+e-} \& \mu + \mu + \mu + \text{when E}_T > 15 \text{ GeV}$
- >Reject events with m_{II} within ±15 GeV of Z mass in e⁺e⁻ & μ ⁺μ⁻ final state
- ➤ Also rejetcs m_{II} < 12 GeV</p>
- >P_T > 45 GeV
- **≻Third lepton veto**
- P_T distribution. The last bin

includes the overflow.

$p_T^{\prime\prime}$ [GeV]	
Expected and observed event yields for the W ⁺ W ⁻ selection. The	
uncertainties correspond to the	
statistical and systematic	

uncertainties added in quadrature:

$\sqrt{s} = 8 \text{ TeV}, L = 3.5 \text{ fb}^{-1}$ Z + jets W + jets stat ⊕ syst

Dilepton invariant mass distribution.

The last bin includes the overflow.

Channel	IvIv		
W+ W-	684±50		
Tt and tW	132±23		
W+Jets	60±22		
WZ and ZZ	27±3		
Z/γ * +jets	43±12		
Wγ (*)	14±5		
Total background	275±35		
Signal + background	959±60		
Data	1111		

 σ (pp \rightarrow W⁺ W⁻) = 69.9 ± 2.8 (stat.) ± 5.6 (syst.) ± 3.1 (lum.) pb at 8 TeV.

- ► A pair of SF, opposite charge, isolated, leading lepton P_T> 20 GeV & second leading lepton P_⊤ >10 GeV used to choose Z candidate
- → require |m_{II} m_z | < 20 GeV
 </p>
- ➤In case several matching pair found, select the one closest to nominal Z mass ➤ Require third high P_T (>20 GeV) isolated lepton associated W boson
- ➤ Require high missing transverse energy > 30 GeV

Event yields

sample	eee	ееµ	μμе	μμμ
Z+Jets	9.8±4.4	16.9±6.0	14.5±5.4	13.8±4.5
top	1.4±0.4	2.7±0.3	6.2±0.7	9.1±1.0
ZZ	2.4±0.1	3.1±0.1	3.9±0.1	5.8±0.1
Ζγ	2.4±0.9	0.4±0.4	3.8±1.2	0
WV	0.1+0.1	0.1±0.1	0.2±0.1	2.2±0.7
VVV	6.1±0.3	7.9±0.3	10.4±0.4	13.4±0.4
WZ	193.9±1.4	245.8±1.6	315.9±1.9	428.0±2.2
Total MC	216.0±4.7	277.0±6.3	354.9±6.0	472.3±5.2
Data-driven	14.8±1.4	27.1±2.9	47.9±3.4	59.0±4.6
Data	235	288	400	557

 σ (pp \rightarrow WZ+X) = 24.61 \pm 0.76 (stat.) \pm 1.13(syst.) \pm 1.08 (lum.) pb at 8TeV

Selection

Dilepton Invariant mass |m_{||} -91|<7.5GeV >45GeV Dilepton P_T No jet with P_T >30GeV Jet veto Reduced E_Tmiss >65GeV E_T miss balance 0.4 <B <1.8 $\Delta\Phi$ (E_T miss , jet) >0.5 rad $\Delta\Phi$ (E_T miss , lep.) >0.2 rad No additional leptons Lepton veto

 (e/μ) with $P_T > 10 GeV$

 σ (pp \rightarrow ZZ) = 6.8 \pm 0.8 (stat.) +1.8/-1.4(syst.) \pm 0.3 (lum.) pb at 8TeV

5 $WW + WZ \rightarrow lv jj$

Selection

- **→one well isolated & identified lepton,p**_T 25(35) GeV μ (e).
- **≻**Large missing transverse energy >25(30) GeV μ (e).
- \triangleright Exactly two jets, P_T >35GeV. >Lepton is required to be consistent with primary vertex (PV) of event. \triangleright PV is chosen as one with highest ΣP_T^2 of
- its associated tracks. >W transverse mass > 30(50) GeV μ (e). \triangleright combined isolation $\Sigma_{\Delta R<0.3}$
- ECAL+HCAL+tracker <10% (5%) μ (e) p_T . ➤ Jet b-tag veto, loose CSV.
- **≻**Secondary lepton veto.

Event yields

channel	Electron
1899±373	783±306
67384±586	31644±85 0
1662±117	946±67
650±33	308±17
3609±155	1408±64
296±317	4195±867
9.73/12 (0.64)	5.30/12 (0.95)
75420	39371
75419	39365
5.153 x 10 ⁻	2.633 x 10 ⁻³
1697±57	867±29
	1899±373 67384±586 1662±117 650±33 3609±155 296±317 9.73/12 (0.64) 75420 75419 5.153 x 10 ⁻³

 σ (pp \rightarrow WW+WZ) = 68.9 \pm 8.7 (stat.) \pm 9.7(syst.) \pm 1.5 (lum.) pb at 7TeV

References

- > The CMS Collaboration, "Measurement of ZZ production cross section and anomalous trilinear gauge couplings in IIII" decay at sqrt(s)= 8 TeV at the LHC", Technical Report CMS-PAS-SMP-13-005, CERN, Geneva, 2013. > The CMS Collaboration, "Measurement of ZZ production cross section at 7 and 8 TeV and anomalous gauge couplings
- limits in 2l2nu decay channel", Technical Report CMS-PAS-SMP-12-016, CERN, Geneva, 2013. > The CMS Collaboration, "Measurement of WW production rate", Technical Report CMS-PAS-SMP-12-013, CERN, Geneva, 2012.
- > The CMS Collaboration, "Measurement of WZ production rate", Technical Report CMS-PAS-SMP-12-006, CERN, Geneva, 2013. > The CMS Collaboration, "Measurement of the sum of WW and WZ production with W+dijet events in pp collisions at
 - sqrt(5) = 7TeV, The European Physical Journal C73(2013),n0.2,doi:10.1140/epjc/sl0052-013-2283-3.

Combined results

Production Cross Section Ratio: $\sigma_{exp} / \sigma_{theo}$ Conclusion Experimental results are compatible with the Standard Model predictions.

Email: a.kumar@cern.ch