Open charm production at the LHC	Mechanism of double-parton scattering (DPS)	Summary	Backup

Production of charmed meson-meson pairs at the LHC: Single- versus double-parton scattering mechanisms

Rafał Maciuła

Institute of Nuclear Physics (PAN), Kraków, Poland

the 2nd annual Large Hadron Collider Physics (LHCP) conference

2nd - 7th June 2014, New York, USA

Open charm production at the LHC	Mechanism of double-parton scattering (DPS)	Summary O	Backup
Outline			

- Theoretical framework within the k_t -factorization approach
- Inclusive single D meson spectra
- Production of DD pairs and kinematical correlations

Mechanism of double-parton scattering (DPS)

- Simple factorized theoretical model
- Double charm (DD pairs) production vs. LHCb data
- DPS effects and inclusive D meson spectra

Based on:

vanHameren, Maciuła, Szczurek, Phys. Rev. D89, 094019 (2014) Maciuła, Szczurek, Phys. Rev. D87, 094022 (2013) Maciuła, Szczurek, Phys. Rev. D87, 074039 (2013) Łuszczak, Maciuła, Szczurek, Phys. Rev. D79, 094034 (2012)

Mechanism of double-parton scattering (DPS)

ummary

Theoretical framework within the kt-factorization approach

Dominant mechanisms of heavy quarks production

• Leading order (LO) processes contributing to $Q\overline{Q}$ production:

- gluon-gluon fusion dominant at high energies
- main classes of the next-to-leading order (NLO) diagrams:

• $\frac{NLO}{LO} \gtrsim 10$ for large $p'_{\perp}s$ or large y;

Open charm production at the LH	С
0000000	

Mechanism of double-parton scattering (DPS)

ummary Backup

Theoretical framework within the k_t -factorization approach

Standard approach of perturbative QCD

 $\begin{array}{l} \mbox{collinear approximation} \rightarrow \mbox{transverse momenta of the incident partons} \\ \mbox{are assumed to be zero} \ \mbox{(Wiezsacker-Williams method in QED)} \end{array}$

• quadrupuly differential cross section:

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \sum_{i,j} x_1 p_i(x_1, \mu^2) \ x_2 p_j(x_2, \mu^2) \ \overline{|\mathcal{M}_{ij}|^2}$$

- $p_i(x_1, \mu^2)$, $p_j(x_2, \mu^2)$ standard collinear PDFs in the proton (e.g. CTEQ, GRV, GJR, MRST, MSTW)
- NLO on-shell matrix elements well-known

Nason et al., Nucl. Phys. B303 (1988) 607; Nucl. Phys. B327 (1989) 49 Beenakker et al., Phys. Rev. D40 (1989) 54; Nucl. Phys. B351 (1991) 505

several approaches: improved schemes of NLO collinear calculations

- FONLL (Cacciari et al.) JHEP 05 (1998) 007; JHEP 03 (2001) 006
- GM-VFNS (Kniehl, Kramer et al.) Phys. Rev. D71 (2005) 014018; Phys. Rev. D79 (2009) 094009

state-of-art: σ_{tot} and inclusive single particle spectra

BUT cannot be applied in more exclusive studies of KINEMATICAL CORRELATIONS

Mechanism of double-parton scattering (DPS)

Summary

Backup

Theoretical framework within the kt-factorization approach

Basic concepts of the k_t -factorization (semihard) approach

 k_t -factorization $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$

Collins-Ellis, Nucl. Phys. B360 (1991) 3;

Catani-Ciafaloni-Hautmann, Nucl. Phys. B366 (1991) 135; Ball-Ellis, JHEP 05 (2001) 053

 \Rightarrow very efficient approach for $Q\overline{Q}$ correlations

$$\begin{aligned} & \bullet \quad \text{multi-differential cross section} \\ & \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \sum_{i,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \frac{1}{|\mathcal{M}_{l^* j^* \to \mathcal{Q}\bar{\mathcal{Q}}}|^2} \\ & \times \quad \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \; \mathcal{F}_i(x_1, \kappa_{1,t}^2) \; \mathcal{F}_j(x_2, \kappa_{2,t}^2) \end{aligned}$$

• LO off-shell $\overline{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2} \Longrightarrow$ Catani-Ciafaloni-Hautmann (CCH) analytic formulae or QMRK approach with effective BFKL NLL vertices

- $\mathcal{F}_i(x_1, \kappa_{1,t}^2), \mathcal{F}_j(x_2, \kappa_{2,t}^2)$ unintegrated (k_t-dependent) gluon distributions
- major part of NLO corrections effectively included ۰. pair creation flavour excitation aluon splittina with gluon emission يفووووووو <u>ىمممع</u>لووووووو ممعمادوووووووو همومور hard scattering hard scattering hard scatterin basesesses 00000 aaaaaaaaa

Mechanism of double-parton scattering (DPS)

Summary

Backup

Theoretical framework within the k_{t} -factorization approach

Unintegrated gluon distribution functions (UGDFs)

most popular models:

- Kwieciński, Jung (CCFM, wide range of x)
- Kimber-Martin-Ryskin (DGLAP-BFKL, wide range of x)
- Kwieciński-Martin-Staśto (BFKL-DGLAP, small x-values)
- Kutak-Staśto (BK, saturation, small x-values)

already applied and tested in:

e.g. deep-inelastic structure function; inclusive charm and associated charm and jet photoproduction at HERA; dijets in photoproduction, hadroproduction and deep-inelastic scattering; electroweak boson production

charm quarks at LHC energies

 \Rightarrow only gluon-gluon fusion

and very small x-values down to 10^{-5}

great test of many different UGDFs

in so far unexplored kinematical regime

lechanism of double-parton scattering (DPS)

Summary

Backup

500

Theoretical framework within the kt-factorization approach

2Dim-differential cross sections for charm quarks $\sqrt{s}=$ 7 TeV

2000000

Acres

Mechanism of double-parton scattering (DPS)

mmary Backup

Theoretical framework within the kt-factorization approach

Fragmentation functions technique

phenomenology:

fragmentation functions extracted from e^+e^- data

often used (older parametrizations):

Peterson et al., Braaten et al., Kartvelishvili et al.

- more up-to-date: charm nonperturbative fragmentation functions determined from recent Belle, CLEO, ALEPH and OPAL data: Kneesch-Kniehl-Kramer-Schienbein (KKKS08) + DGLAP evolution
- $\bullet~$ FONLL \rightarrow Braaten et al. (charm) and Kartvelishvili et al. (bottom) GM-VFNS \rightarrow KKKS08 + evolution

- numerically performed by rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$\frac{d\sigma(y, p_t^M)}{dyd^2 p_t^M} \approx \int \frac{D_{Q \to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_t^Q)}{dyd^2 p_t^Q} dz$$

where:
$$p_t^Q = \frac{p_t^M}{z}$$
 and $z \in (0, 1)$

approximation:

rapidity unchanged in the fragmentation process $\rightarrow y_Q = y_M$

Mechanism of double-parton scattering (DPS) 0000000

Summary

Backup

Inclusive single D meson spectra

Inclusive D meson spectra

- typical pQCD uncertainties: scales and quark mass
- only the upper limits of uncertainty bands for the KMR UGDF reasonably well describe the ALICE, ATLAS and LHCb data
- k_t-factorization with the KMR UGDF consistent with the FONLL and NLO PM collinear predictions

・ロト ・ 同ト ・ ヨト ・

Mechanism of double-parton scattering (DPS)

Summary

Backup

Production of DD pairs and kinematical correlations

DD meson-antimeson correlations vs. LHCb data

• KMR UGDF \Rightarrow absolute cross section well described

Mechanism of double-parton scattering (DPS)

Summary

Backup

Simple factorized theoretical model

Double charm production (final state with two pairs of $c\bar{c}$)

SINGLE CHARM vs. DOUBLE CHARM mechanism

 SPS cc vs. DPS cccc: comparable total cross sections at LHC energies!

• SPS cccc negligible

Mechanism of double-parton scattering (DPS) $0 \bullet 0 \circ 0 \circ 0$

Summary Backup O

Simple factorized theoretical model

Simple DPS picture and factorized Ansatz

process initiated by two simultaneous hard gluon-gluon scatterings in one proton-proton interaction \Rightarrow

$$\sigma^{DPS}(pp \to c\bar{c}c\bar{c}X) = \frac{1}{2\sigma_{eff}} \cdot \sigma^{SPS}(pp \to c\bar{c}X_1) \cdot \sigma^{SPS}(pp \to c\bar{c}X_2)$$

two subprocesses are not correlated and do not interfere

analogy: frequently considered mechanisms of double gauge boson production and double Drell-Yan anihillation

(日)

$$\frac{d\sigma^{DPS}(pp \to c\bar{c}c\bar{c}X)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t} dy_3 dy_4 d^2 p_{3,t} d^2 p_{4,t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma^{SPS}(pp \to c\bar{c}X_1)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} \cdot \frac{d\sigma^{SPS}(pp \to c\bar{c}X_2)}{dy_3 dy_4 d^2 p_{3,t} d^2 p_{4,t}}$$

in more general form:

$$d\sigma^{DPS}(pp \to c\bar{c}c\bar{c}X) = \frac{1}{2} \cdot \Gamma_{gg}(b, x_1, x_2; \mu_1^2, \mu_2^2) \Gamma_{gg}(b, x_1', x_2'; \mu_1^2, \mu_2^2)$$
$$\times d\sigma_{gg \to c\bar{c}}(x_1, x_2', \mu_1^2) \cdot d\sigma_{gg \to c\bar{c}}(x_1', x_2, \mu_2^2) dx_1 dx_2 dx_1' dx_2' d^2 b$$
$$DPDF - \text{emission of one parton with assumption that second parton is also emitted}$$

Mechanism of double-parton scattering (DPS) 0000000

Simple factorized theoretical model

Double-parton distributions (DPDFs) and factorized Ansatz

 $\Gamma_{i,i}(b, x_1, x_2; \mu_1^2, \mu_2^2) = F_i(x_1, \mu_1^2) F_i(x_2, \mu_2^2) F(b; x_1, x_2, \mu_1^2, \mu_2^2)$

 correlations between two partons C. Flensburg et al., JHEP 06, 066 (2011)

in apparal.

$$\int_{\sigma_{eff}} (x_1, x_2, x_1', x_2', \mu_1^2, \mu_2^2) = \left(\int d^2 b F(b; x_1, x_2, \mu_1^2, \mu_2^2) F(b; x_1', x_2', \mu_1^2, \mu_2^2) \right)^{-1}$$

factorized Ansatz:

- additional limitations: $x_1 + x_2 < 1$ oraz $x'_1 + x'_2 < 1$
- DPDF in multiplicative form: $\Gamma_{gg}(b; x_1, x_2, \mu_1^2, \mu_2^2) = F_g(x_1, \mu_1^2)F_g(x_2, \mu_2^2)F(b)$

• $\sigma_{\text{eff}} = \left[\int d^2 b \left(F(b)\right)^2\right]^{-1}$, F(b) - energy and process independent

phenomenology: $\sigma_{eff} \Rightarrow$ nonperturbative quantity with a dimension of cross section, connected with transverse size of proton $\sigma_{\rm eff} \approx 15 \, \rm mb \, (p_{\perp} - independent)$

イロト イポト イヨト イヨト

a detailed analysis of σ_{eff} : Seymour, Siódmok, JHEP 10, 113 (2013)

Mechanism of double-parton scattering (DPS) $\circ \circ \circ \circ \circ \circ \circ \circ$

Summary Backu

Double charm (DD pairs) production vs. LHCb data

How the DPS mechanism can be investigated?

Study of **MESON-MESON pairs** production: DD pairs - both containing c quarks or both containing \bar{c} antiquark

- impossible to produce within standard SPS single $c\bar{c}$ production mechanism
- measurements of charm meson-meson pairs highly recommended at the LHC
- larger rapidity differences between particles: DD pairs at ATLAS
- same-sign nonphotonic lepton pairs, e.g. $\mu^+\mu^+$ at ALICE

Mechanism of double-parton scattering (DPS) $\circ \circ \circ \circ \circ \circ \circ \circ$

Summary Backup

Double charm (DD pairs) production vs. LHCb data

First clean signature of the DPS mechanism?

proper order of magnitude but still something is missing (about factor 2)

Open charm production at the LHC	Mecho
	0000

echanism of double-parton scattering (DPS)

Double charm (DD pairs) production vs. LHCb data

What can be still missing?

Different class of the DPS diagrams (3 \rightarrow 4) \Rightarrow perturbative parton splitting

- LO calculations available using splitting DPDFs J.Gaunt, JHEP, 01, 042 (2013)
- our first rough estimation: $\frac{DPS(3\rightarrow 4)}{DPS(4\rightarrow 4)} \approx 30-60\%$
- inclusion of the DPS(3 \rightarrow 4) contributions in the LHCb data very difficult (unknown $\sigma_{eff}^{3 \rightarrow 4}$; the LO collinear formalism is not sufficient for charm)
- more precise calculations, beyond the factorized Ansatz, are NOT possible in the moment ⇒ more advanced framework have to be worked out

イロト イポト イヨト イヨト

Open charm p	roduction	at the	LHC

Mechanism of double-parton scattering (DPS) $\circ\circ\circ\circ\circ\circ$

Summary

Backup

DPS effects and inclusive D meson spectra

Does the DPS contribute to inclusive D mesons spectra?

Open charm production at the LHC	Mechanism of double-parton scattering (DPS)	Summary	Backup
00000000	0000000	•	
Conclusions			

SPS cc:

- only upper limits of theoretical predictions within the k_t-factorizaton approach give quite reasonable description of the ALICE, ATLAS and LHCb data (also true for FONLL collinear approach)
- k₁-factorizaton approach together with KMR UGDF is very efficient for studying kinematical correlations in less inclusive measurements of DD pairs

DPS cccc:

- SPS cc and DPS cccc cross sections become comparable at LHC energies
- SPS $c\bar{c}c\bar{c}$ mechanism is negligible in comparison to the DPS
- Production of double charm (DD pairs) is an extremely good testing ground of double-parton scattering effects
- DPS mechanism can give a very important contribution to inclusive D meson distributions?

Thank You for attention!

Open charm production at the LHC	Mechanism of double-parton scattering (DPS)	Summary	Backup

Backup

pen charm production at the LHC	Mechanism of double-parton scattering (DPS)	Summary	Backu

Heavy quarks measurements in pp scattering at the LHC

- direct: open charm/bottom mesons \rightarrow reconstruction of all decay products $(K^-\pi^+, K^+K^-\pi^+, K^-\pi^+\pi^+)$
- Indirect: nonphotonic electrons/muons → leptons from semileptonic decays of heavy flavoured mesons

- ALICE, $|y_D| < 0.5,$ JHEP 01 (2012) 128; Phys. Lett. B718 (2012) 279
- LHCb, $2.0 < y_D < 4.5$, $p_{\perp} < 8$ GeV, Nucl. Phys. B871 (2013) 1-20 very small x region! (down to 10^{-5})
- ATLAS, $|\eta_{\rm D}| <$ 2.1, $p_{\perp} >$ 3.5 GeV, ATLAS-CONF-2011-017 wide rapidity interval

• □ ▶ • □ ▶ • □ ▶

Mechanism of double-parton scattering (DPS)

Inclusive D meson spectra

ALICE, ATLAS, LHCb

- all of the UGDFs models underestimate experimental data points
- only the KMR UGDF gives results which are close to the measured values

Mechanism of double-parton scattering (DPS) 0000000

Backup

Double charm production: Integrated cross sections

				σ_{tot}^{THEORY} (nb)		
Mode	σ_{tot}^{EXP} (nb)	KMR $^+(\mu)$ $^+$	(m_c)	Jung s	setA+	KN	٨S
		$\varepsilon_c = 0.05$	$\varepsilon_c = 0.02$	$\varepsilon_c = 0.05$	$\varepsilon_c = 0.02$	$\varepsilon_c = 0.05$	$\varepsilon_c = 0.02$
$D^{0}D^{0}$	$690\pm40\pm70$	265 +140 +157	400	120	175	84	126
D^0D^+	$520\pm80\pm70$	$212 {}^{+112}_{-62} {}^{+126}_{-75}$	319	96	140	67	100
$D^0 D_s^+$	$270\pm50\pm40$	$75 {}^{+40}_{-22} {}^{+45}_{-27}$	113	34	50	24	36
D^+D^+	$80\pm10\pm10$	$42 \begin{array}{c} +23 \\ -13 \end{array} \begin{array}{c} +26 \\ -15 \end{array}$	64	19	28	13	20
$D^+D^+_S$	$70\pm15\pm10$	30 ⁺¹⁶ ⁺¹⁸ ₋₉ ⁻¹¹	45	14	20	10	14
$D_{S}^{+}D_{S}^{+}$	_	$11^{+5}_{-3}{}^{+6}_{-4}$	16	5	7	3	5

σ^{THEORY}_{tot} consistent with experimental values taking into account huge theoretical and experimental uncertainties

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・