Soft QCD Measurements at LHCb

Philip Ilten on behalf of the LHCb Collaboration

Massachusetts Institute of Technology

June 5, 2014

Overview

- test non-perturbative regimes of QCD
- tune multi purpose event generators
- look for new effects to refine models

- hadronization
 - partons to hadrons
 - IR sensitive: charge density and multiplicity
- multi parton interactions
 - underlying event
 - IR safe: energy flow

LHCb Measurements

title	RIVET plugin	reference
Measurement of charged particle multiplicities and densities	to be released	Eur. Phys. J. C 74 (2014) 2888
Prompt charm production in pp collisions at $\sqrt{s}=7~{\rm TeV}$	LHCB_2013_I1218996	Nucl. Phys. B 871 (2013) 1-20
Measurement of the forward energy flow in pp collisions at $\sqrt{s}=7~{\rm TeV}$	LHCB_2013_I1208105	Eur. Phys. J. C 73 (2013) 2421
Measurement of V^0 production ratios in pp collisions at $\sqrt{s}=0.9$ and 7 TeV	LHCB_2011_I917009	Eur. Phys. J. C 72 (2012) 2168
Measurement of the inclusive ϕ cross- section in pp collisions at $\sqrt{s} = 7$ TeV	LHCB_2011_I919315	Phys. Lett. B 703 (2011) 267-273
Measurement of charged particle multiplicities in pp collisions at $\sqrt{s}=7~{\rm TeV}$		Eur. Phys. J. C 72 (2012) 1947
Prompt K_S^0 production in pp collisions at $\sqrt{s} = 0.9$ TeV	LHCB_2010_S8758301	Phys. Lett. B 693 (2010) 69-80

Introduction

LHCb Detector

[JINST 3 (2008) S08005]

- momentum resolution between 0.4% at 5 GeV to 0.6% at 100 GeV
- impact parameter resolution of 20 μ m for high $p_{\rm T}$ tracks

Charge Multiplicity

Hadronization Models

Multiplicity Analysis

- visible event
 - at least one charged particle
 - $2.0 < \eta < 4.8$
 - $p_{\rm T} > 0.2 \,\,{\rm GeV}$
 - p > 2 GeV
 - $\tau < 10 \ {\rm ps}$

- reconstructed event
 - at least one track
 - must traverse all tracking stations
 - pass within 2 mm of beamline
 - originate from luminous region

- **1** correct for sample impurity
 - $\approx 6.5\%$ fakes, $\approx 1\%$ duplicates, $\approx 4.5\%$ non-prompt
- 2 account for visible events with no reconstructed tracks
- **3** unfold distribution for pile-up effects
- **4** apply reconstruction efficiencies

Density Results

[Eur. Phys. J. C 74 (2014) 2888]

- the p requirement causes the falling distribution at low η
- neither Pythia 6 nor Pythia 8.145 were tuned with LHC data
 - these significantly under-estimate the data
- Pythia 8.180 describes the data well
- Herwig++ does as well, except for $0.2 < p_{\rm T} < 0.5$

Multiplicity Results

[Eur. Phys. J. C 74 (2014) 2888]

- distributions for 2.0 < η < 2.5 and 4.0 < η < 4.5
 - inclusive, differential $p_{\rm T}$, and differential η distributions in appendix
- at low and high η all tunes under-estimate for high multiplicity
 - LHC tunes do slightly better
 - non-LHC tunes typically over-estimate low multiplicity
- inclusively PYTHIA 8.180 describes data well, but under-estimates for high multiplicity
- HERWIG++ 2.6.3 consistently describes inclusive data well
- HERWIG++ 2.7.0 does not model the range 15 < n < 25 well

Multi Parton Interaction Models

depends on impact parameter

f(x, b) = f(x)g(b)

hard \rightarrow soft model (HEP)	soft \rightarrow hard model (air-shower)	
• begin with <i>t</i> -channel $2 \rightarrow 2$ QCD $d\hat{\sigma}_{2\rightarrow 2} \propto dp_T^2 \frac{\alpha_s^2(p_T^2)}{p_T^4}$ • divergent in r_T , cut-off or damp	 begin with Regge effective field theory dσ ∝ dM²/M² M is mass of the diffractive system output field to a singlet parameter 	
$\frac{\alpha_s^2(p_{\rm T}^2_0 + p_{\rm T}^2)}{\alpha_s^2(p_{\rm T}^2)} \frac{p_{\rm T}^4}{(p_{\rm T}^2_0 + p_{\rm T}^2)^2}$	 exchange of color-singlet pomeron between hadrons leading structure is ff or gg at high energy primarily gg 	
models color screening and saturation effectsnumber of interactions also	 include hard structure by resolving pomeron constituents requires some smooth transition between the two regimes 	

Ilten

Energy Flow Analysis

- measure charged energy flow
 - veto events with more than 1 primary vertex
 - use tracks with VELO and IT or OT hits
 - 2

$$\frac{1}{N}\frac{\mathrm{d}E}{\mathrm{d}\eta} = \frac{1}{\Delta\eta} \left(\frac{1}{N}\sum_{i=1}^{n(\Delta\eta)} E_i\right)$$

- $N \equiv$ number of inelastic pp interactions
- $n \equiv$ number of tracks within bin of $\Delta \eta$
- **1** unfold detector effects with bin-to-bin corrections
 - estimate systematic uncertainty from model bias using various PYTHIA configurations
- 0 calculate total energy flow using neutral to charged ratio, R

$$F_{\text{total}} = F_{\text{charged}}(1 + R_{\text{gen}}) \left(\frac{1 + R_{\text{data}}}{1 + R_{\text{MC}}}\right)$$

Event Classification

$$\sigma_{\rm inelastic} = \sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm CD} + \sigma_{\rm ND}$$

Inclusive Results

Hard Scatter Results

Diffractive Enriched Results

Non-diffractive Enriched Results

Conclusions

- LHCb provides complementary soft QCD measurements in the high η and low $p_{\rm T}$ regions to the other LHC detectors
- available (soon) as RIVET plugins for additional comparisons
- validates consistency of the MPI and hadronization models at LHC energies for forward production
- no unexpected behavior
 - no clear winners between hadronization and MPI models
- non-LHC tunes underestimate forward particle density
- default tune for PYTHIA 8.180 performs well
- UE-EE-4 tune for HERWIG++ consistently out-performs UE-EE-5 tune for HERWIG++
- looking forward to 13 TeV data!

Inclusive Multiplicity Results

Differential Multiplicity Results (η)

Differential Multiplicity Results $(p_{\rm T})$

