New results in B decays

THE UNIVERSITY OF WARVICK

European Research Council

Mark Whitehead – for the LHCb collaboration

LHCb experiment

5/6/2014

Why always γ ?

- The least well measured angle of the unitarity triangle
 - CKM fitter FPCP 2013: (68.0 + 8.0) °
 - UT fit Post EPS 2013: (70.1 ± 7.1)°
 - Key goal of LHCb is to improve this situation
- A probe for new physics?
 - Tree processes theoretically very clean
 - Loop processes may see deviations
- Focus so far has been on $B^{\pm} \rightarrow DK^{\pm}$ decays
 - Interference of $b \rightarrow c$ and $b \rightarrow u$ transitions

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

$B^{\pm} \rightarrow DK^{\pm}$ decays

• The angle γ is the weak phase between b \rightarrow c and b \rightarrow u transitions

• Interference occurs when D^0 and \overline{D}^0 decay to the same final state

Methods to measure y

Phys. Lett. B 253 (1991) 483, Phys. Lett. B 265 (1991) 172

$$A_{ADS}^{K} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma}{R_{ADS}}$$
$$R_{ADS}^{K} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma$$

Phys. Rev. Lett. 78 (1997) 3257, Phys. Rev. D 63 (2001) 036005

GGSZ

ADS

- 3 body self conjugate decays
- Eg: D→K_Sππ

$$x_{+} = r_{B} \cos(\delta_{B} + \gamma)$$

 $y_{+} = r_{B} \sin(\delta_{B} + \gamma)$

Phys. Rev. D 68 (2003) 054018

Phys. Lett. B 733C (2014) 36

- Recent result from B→DK studies
 - ADS-like analysis using a singly Cabibbo-supressed decay
 - Split the decay modes by the charge of the charged K_D and B mesons
 - Same sign (SS) and opposite sign (OS)
- Take input from CLEO measurements
 - Coherence factor (κ) and the average strong phase difference (δ)
 - Both measured over the full Dalitz plot and a K*(892)[±] region.
- Full 3fb⁻¹ 2011+2012 data sample used

Same sign $B^{\pm} \rightarrow D(K_{S}K\pi)h^{\pm}$

Phys. Lett. B 733C (2014) 36

5/6/2014

Opposite sign $B^{\pm} \rightarrow D(K_{S}K\pi)h^{\pm}$

5/6/2014

$B^{\pm} \rightarrow D(K_{S}K\pi)h^{\pm}$

- 7 observables calculated from the 8 yields
 - 3 yield ratios and 4 asymmetries

Observable	Whole Dalitz plot	$K^*(892)^{\pm}$ region
$\mathcal{R}_{ m SS/OS}$	$1.528 \pm 0.058 \pm 0.025$	$2.57 \pm 0.13 \pm 0.06$
$\mathcal{R}_{DK/D\pi, \mathrm{SS}}$	$0.092 \pm 0.009 \pm 0.004$	$0.084 \pm 0.011 \pm 0.003$
$\mathcal{R}_{DK/D\pi, ext{ OS}}$	$0.066 \pm 0.009 \pm 0.002$	$0.056 \pm 0.013 \pm 0.002$
$\mathcal{A}_{ ext{SS}, \ DK}$	$0.040 \pm 0.091 \pm 0.018$	$0.026 \pm 0.109 \pm 0.029$
$\mathcal{A}_{\mathrm{OS},\ DK}$	$0.233 \pm 0.129 \pm 0.024$	$0.336 \pm 0.208 \pm 0.026$
$\mathcal{A}_{ ext{SS}, \ D\pi}$	$-0.025 \pm 0.024 \pm 0.010$	$-0.012 \pm 0.028 \pm 0.010$
$\mathcal{A}_{\mathrm{OS},\ D\pi}$	$-0.052 \pm 0.029 \pm 0.017$	$-0.054 \pm 0.043 \pm 0.017$

- Higher sensitivity in the K* region
 - As expected from larger coherence factor
 - Good future prospects

50

100

K* region

0.05

0

Phys. Lett. B 733C (2014) 36

Mark Whitehead – LHCP 2014, NYC

γ

150

$B^{\pm} \rightarrow D(K_{S}\pi\pi)h^{\pm}$

Model dependent GGSZ amplitude analysis

- Use Babar model for the fit to the D decay
- 1fb⁻¹ data sample
- Fit B mass to extract signal and backgrounds yields
 - Define signal region as ± 50MeV/c²
 - Downstream and Long refer to track types used to make the K_S

Mark Whitehead – LHCP 2014, NYC

LHCb-PAPER-2014-017

$B^{\pm} \rightarrow D(K_{S}\pi\pi)h^{\pm}$

- Dalitz plot fit
 - K*(892) dominates
 - Split B+ and B-
 - Backgrounds
 - Efficiency
- Cartesian parameters
 - D⁰ mixing negligible

 $\begin{aligned} x_{-} &= +0.027 \pm 0.044 \, {}^{+0.010}_{-0.008} \pm 0.001 \\ y_{-} &= +0.013 \pm 0.048 \, {}^{+0.008}_{-0.006} \pm 0.003 \\ x_{+} &= -0.084 \pm 0.045 \pm 0.009 \pm 0.003 \\ y_{+} &= -0.032 \pm 0.048 \pm 0.009 \pm 0.007 \end{aligned}$

Preliminary

B- only, $m_+ = m(K_S \pi_+)$

Preliminary

Mark Whitehead – LHCP 2014, NYC

LHCb-PAPER-2014-017

$B^{\pm} \rightarrow D(K_{S}\pi\pi)h^{\pm}$

- Convert the Cartesian parameters $\gamma = (84^{+49}_{-42})^{\circ}$ Preliminary
 - Includes all uncertainties
 - Choose solution < 180°

- Aim to measure the mass and lifetime of $\Xi_{\rm b}$
 - Lifetime expected to be equal to that of Λ_b (Leading order HQE)
 - Large sample of ~3800 decays available from 3fb-1 data set
 - $\Lambda_b \rightarrow \Lambda_c \pi$ provides the ideal control channel, kinematics are ~identical
 - Decays of Λ_c and Ξ_c to the same final state of pK π

Float the mass difference in the fit to data

 $M(\Xi_b^0) - M(\Lambda_b^0) = 172.44 \pm 0.39 \,(\text{stat}) \pm 0.17 \,(\text{syst}) \,\text{MeV}/c^2$ $M(\Xi_b^0) = 5791.80 \pm 0.39 \,(\text{stat}) \pm 0.17 \,(\text{syst}) \pm 0.26 \,(\Lambda_b^0) \,\text{MeV}/c^2$

- Measure lifetime from yield ratio as a function of decay time
 - Fit with the function $e^{\beta t}$ where $\beta = 1/\tau_{A^0_b} 1/\tau_{\Xi^0_b}$
 - Efficiency corrected

arXiv:1405.7223

World first lifetime measurement

• Two world best mass measurements

 $M(\Xi_b^0) = 5791.80 \pm 0.39 \,(\text{stat}) \pm 0.17 \,(\text{syst}) \pm 0.26 \,(\Lambda_b^0) \,\text{MeV}/c^2$ $M(\Xi_c^+) = 2467.97 \pm 0.14 \,(\text{stat}) \pm 0.10 \,(\text{syst}) \pm 0.14 \,(\Lambda_c^+) \,\text{MeV}/c^2$

Summary

- Latest updates from $B^{\pm} \rightarrow DK^{\pm} \gamma$ studies
 - Using a new D decay mode, $D \rightarrow K_S K \pi$
 - First model dependent GGSZ results
- Much more still to come on y
 - Update all 1fb⁻¹ analyses to the full 3fb⁻¹ data sample
 - Other B decays e.g. $B^0 \rightarrow DK\pi$ and $B^0 \rightarrow DK^*$, $B_s \rightarrow D_s K$ and $B^{\pm} \rightarrow DK^{\pm}\pi\pi$
- Progress on b-Baryon decays
 - Precise lifetime and mass measurements of the $\Xi_{\rm b}$
- Stay tuned for all of our new results in this sector

Detector

Mark Whitehead – LHCP 2014, NYC

5/6/2014

Luminosity

5/6/2014

Methods to measure y

- GLW
 - CP eigenstate D decays
 - Eg: $D \rightarrow KK$, $D \rightarrow \pi\pi$

$$A_{C\mathcal{P}+} = \frac{2r_B \sin \delta_B \sin \gamma}{R_{C\mathcal{P}+}}$$
$$R_{C\mathcal{P}+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

Phys. Lett. B 253 (1991) 483, Phys. Lett. B 265 (1991) 172

- ADS
 - Quasi flavour specific decays
 - Eg: $D \rightarrow K\pi$, $D \rightarrow K\pi\pi\pi$

$$A_{ADS}^{K} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma}{R_{ADS}}$$
$$R_{ADS}^{K} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma$$

Phys. Rev. Lett. 78 (1997) 3257, Phys. Rev. D 63 (2001) 036005

- GGSZ
 - 3 body self conjugate decays
 - Eg: D→K_Sππ

$$x_+ = r_B \cos(\delta_B + \gamma)$$

 $y_+ = r_B \sin(\delta_B + \gamma)$

Phys. Rev. D 68 (2003) 054018

1fb⁻¹ γ combination

- Combination includes the following results
 - 2 body GLW/ADS (D \rightarrow KK, K π , $\pi\pi$) Phys. Lett. B 712 (2012) 203
 - 4 body ADS ($D \rightarrow K\pi\pi\pi$) Phys. Lett. B 723 (2013) 44
 - GGSZ ($D \rightarrow K_S \pi \pi, K_S KK$) Phys. Lett. B 718 (2012) 43
 - Information on the strong phase from CLEO

Phys. Rev. D 80 (2009) 031105 Phys. Rev. D 80 (2009) 032002

- Additionally:
 - D⁰ mixing, CPV in charm decays

 $\gamma = (72.0^{+14.7}_{-15.6})^{\circ}$ at 68% CL

• $B \rightarrow D\pi$ decays also used

 $\gamma = (72.6^{+9.1}_{-15.9})^{\circ}$ at 68% CL

Phys. Lett. B 726 (2013) 151

5/6/2014

1fb⁻¹ y combination + 2fb⁻¹ GGSZ

 $\gamma = (67 \pm 12)^{\circ}$ at 68% CL

Preliminary

LHCb-CONF-2013-006

2 body GLW

Mark Whitehead – LHCP 2014, NYC

5/6/2014

2 body ADS

4 body ADS

Mark Whitehead – LHCP 2014, NYC

5/6/2014

1fb-1 MI GGSZ

5/6/2014

2fb-1 MI GGSZ

5/6/2014

1fb-1 MD GGSZ

5/6/2014

1fb-1 MD GGSZ

5/6/2014