ATLAS measurements of multi-boson production

C. Hays, Oxford University *for the ATLAS Collaboration*

3 June 2014

Diboson production at the LHC

Probing gauge-boson self-couplings & interference with increasing precision

Measurements constrain modelling of backgrounds to Higgs measurements

Testing QCD calculations to increasing accuracy

C. Hays, Oxford University

Diboson measurements at ATLAS

Stand	lard Model Production	Cross Section	Measurement	S Status: March 2014	∫£ dt [fb ⁻¹]	Reference
tt Z	σ < 0.71 pb (95% CL upper limit) (data), HELAC-NLO (theo	rry)		4.7	ATLAS-CONF-2012-126
t _{s−channel} total		σ < 26.5 pb (95% CL upper	limit) (data), NLO+NNLL (theory)		0.7	ATLAS-CONF-2011-118
Zjj еwк	$\sigma = 54.7 \pm 4.6^{+9.9}_{-10.5}$ fb (data), Powheg (theory)	ATLAS	Preliminary		20.3	arXiv:1401.7610 [hep-ex]
Ζγ fiducial, njet=0	c = 1.05 ± 0.02 ± 0.11 pb (data), MCFM (theory)	Run 1	$\sqrt{s} = 7, 8 \text{ TeV}$	•	4.6	PRD 87, 112003 (2013)
Wγ fiducial, njet=0	σ = 1.76 ± 0.03 ± 0.22 pb (data), MCFM (theory)				4.6	PRD 87, 112003 (2013)
tτγ fiducial	$σ = 2.0 \pm 0.5 \pm 0.7$ pb (data), Whizzard+NLO (theory)		LHC pp $\sqrt{s} = 7$ TeV	•	1.0	ATLAS-CONF-2011-153
ZZ	$\sigma = 6.7 \pm 0.7 \stackrel{+0.5}{_{-0.4}} \text{ pb (data), MCFM (theory)}$ $\sigma = 7.1 \stackrel{+0.5}{_{-0.4}} \pm 0.4 \text{ pb (data), MCFM (theory)}$	Þ 4	theory		4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020
WZ	$\sigma = 19.0 + \frac{1.4}{-1.3} \pm 1.0 \text{ pb (data), MCFM (theory)}$ $\sigma = 20.3 + \frac{0.8}{-0.7} + \frac{1.4}{-1.3} \text{ pb (data), MCFM (theory)}$	Þ Å	• data stat only stat+syst		4.6 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021
Wt	σ = 16.8 ± 2.9 ± 3.9 pb (data), NLO+NNLL (theory) σ = 27.2 ± 2.8 ± 5.4 pb (data), NLO+NNLL (theory)		LHC pp \sqrt{s} = 8 TeV		2.0 20.3	PLB 716, 142-159 (2012) ATLAS-CONF-2013-100
γγ fiducial	44.0 ^{+3.2} _{-4.2} pb (data), 2γ NNLO (theory)	o	theory	•	4.9	JHEP 01, 086 (2013)
WW total	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb} (\text{data}), \text{MCFM (theory)}$	•	stat only stat+syst		4.6	PRD 87, 112001 (2013)
t _{t-channel}	σ = 83 ± 4 $^{+20}_{-19}$ pb (data), NLO+NNLL (theory) σ = 82.6 ± 1.2 ± 12.0 pb (data), NLO+NNLL (theory)				1.0 20.3	PLB 717, 330 (2012) ATLAS-CONF-2014-007
total	σ = 177 ± 3 ± 11 pb (data), top++ NNLO+NNLL (theory) σ = 237.7 ± 1.7 ± 11.2 pb (data), top++ NNLO+NNLL (theory)	¢ 4			1.1 20.3	ATLAS-CONF-2012-134 ATLAS-CONF-2013-097
Z	σ = 27.84 ± 0.18 ± 1.1 nb (data), FEWZ+HERA1.5 NNLO (theory)		4	•	0.035	PRD 85, 072004 (2012)
W total	σ = 94.51 ± 0.19 ± 3.7 nb (data), FEWZ+HERA1.5 NNLO (theory)		\$	•	0.035	PRD 85, 072004 (2012)
10	10^{-3} 10^{-2} 10^{-1} 1	$10^1 10^2 10^2$	$10^3 10^4 10^5$	0.5 1 1.5		
			σ [pb]	data/theory		

 $ZZ \rightarrow llll: 7 \& 8 \text{ TeV}$ $WZ \rightarrow lv ll: 7 \& 8 \text{ TeV}$ $WW \rightarrow lv lv, lv jj: 7 \text{ TeV}$ $Z\gamma \rightarrow ll\gamma, vv\gamma: 7 \text{ TeV}$ $W\gamma \rightarrow lv\gamma: 7 \text{ TeV}$

(Also same-charge WW via vector-boson scattering: Simone Pagan Griso's talk)

Diboson measurement strategy

Measure cross section within a fiducial region

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bg}}{\mathcal{L}C_{WW}}$$

*C*_{ww}: ratio of measured to produced WW events in fiducial region

Extrapolate to total cross section

$$\sigma(pp \to WW) = \frac{N_{data} - N_{bg}}{A_{WW}C_{WW}\mathcal{LB}}$$

A_{ww}: kinematic and geometric acceptance

B: branching ratio

Study unfolded differential cross sections and probe high-Q² events for anomalous TGCs

$$\mathcal{L}_{WWV}/g_{WWV} = ig_1^V \left(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \right) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda} SM: g_1^{\nu} = \kappa_{\nu} = 1; \lambda_{\nu} = 0$$

ZZ cross sections

WZ cross sections

75% purity >800 WZ events

 32 ± 5

 $277 \pm 9 \pm 24$

819±34

 $W/Z + \gamma$

Bkg (total)

Expected signal

 13 ± 3

 $60 \pm 4 \pm 11$

 144 ± 12

 1.3 ± 0.6

 $55 \pm 4 \pm 10$

199±16

C. Hays, Oxford University

 17 ± 3

 $87 \pm 5 \pm 11$

 200 ± 16

 $75\pm5\pm14$

276±21

WZ cross sections

Channel	Cross Section [fb]
μμμ	$23.3^{+1.7}_{-1.6}$ (stat.) $^{+1.5}_{-1.5}$ (syst.) $^{+0.7}_{-0.7}$ (lumi.)
еµµ	$26.2^{+2.2}_{-2.1}$ (stat.) $^{+1.7}_{-1.7}$ (syst.) $^{+0.9}_{-0.8}$ (lumi.)
ееµ	$26.8^{+2.1}_{-2.0}$ (stat.) $^{+1.6}_{-1.6}$ (syst.) $^{+0.8}_{-0.8}$ (lumi.)
eee	$22.7^{+2.5}_{-2.3}$ (stat.) $^{+2.3}_{-2.3}$ (syst.) $^{+0.8}_{-0.7}$ (lumi.)
Combined	99.2 $^{+3.8}_{-3.0}$ (stat.) $^{+5.1}_{-5.4}$ (syst.) $^{+3.1}_{-3.0}$ (lumi.)

SM fiducial cross section predictions: 24.8 ± 0.9 fb per channel 99.2 ± 3.6 fb sum over channels

SM total cross section prediction: $20.3 \pm 0.8 \text{ pb}$

Channel	Cross Section [pb]
μμμ	$19.1^{+1.4}_{-1.3}$ (stat.) $^{+1.3}_{-1.3}$ (syst.) $^{+0.6}_{-0.6}$ (lumi.)
еµµ	$21.4^{+1.9}_{-1.7}$ (stat.) $^{+1.5}_{-1.5}$ (syst.) $^{+0.7}_{-0.7}$ (lumi.)
ееµ	$21.9^{+1.8}_{-1.6}$ (stat.) $^{+1.4}_{-1.4}$ (syst.) $^{+0.7}_{-0.6}$ (lumi.)
eee	$18.6^{+2.1}_{-1.9}(\text{stat.}) \stackrel{+1.9}{_{-1.9}}(\text{syst.}) \stackrel{+0.6}{_{-0.6}}(\text{lumi.})$
Combined	$20.3^{+0.8}_{-0.7}$ (stat.) $^{+1.2}_{-1.1}$ (syst.) $^{+0.7}_{-0.6}$ (lumi.)

3 June, 2014

WW cross sections

3 June, 2014

C. Hays, Oxford University

8

WW differential cross section & aTGCs

Measure unfolded differential cross section of leading lepton $p_{_{T}}$

Set limits in three scenarios: "LEP" ($\Delta \kappa_{\gamma} \mu \Delta g_{1}^{\ z} - \Delta \kappa_{z}$: 3 parameters) "Equal Couplings" (WWZ = WW γ : 2 parameters) "HISZ" ($\Delta g_{1}^{\ z} \mu \Delta \kappa_{z} \& \Delta \kappa_{\gamma} \mu \Delta \kappa_{z}$: 2 parameters)

C. Hays, Oxford University

GeV 600 ATLAS $Ldt = 4.6 \text{ fb}^{-1}$ √s = 7 TeV Events / 20 500 Data SM WW • Δκ₇=0.1 400 $\lambda_{z} = \lambda_{y} = 0.15$ ∆g^z=0.2 300 Background //// σ_{stat+syst} 200 100 140 160 20 40 60 80 100 120 180 200 Leading lepton p_ [GeV]

Probe anomalous couplings at high $p_{_{T}}$

3 June, 2014

$Z\gamma$ cross sections

Events with two leptons with high invariant mass, and a photon

	$N_{\rm jet} \ge 0$		$N_{\text{iet}} = 0$		(2013)
Nobs	$e^+e^-\gamma$	$\mu^{+}\mu^{-}\gamma$ 2756	$e^+e^-\gamma$	$\mu^{+}\mu^{-}\gamma$ 2032	(2013)
$\frac{N_{Z\gamma}}{N_{Z\gamma}^{BG}}$	311 + 57 + 68	$366 \pm 83 \pm 73$	$156 \pm 43 \pm 32$	2032 244 + 41 + 49	4000 Zγ events
$N_{Z\gamma}^{sig}$	$1600 \pm 71 \pm 68$	$2390 \pm 97 \pm 73$	$1260 \pm 56 \pm 32$	$1790 \pm 59 \pm 49$	85% purity

>400 Zγ events

3 June, 2014

40% purity

C. Hays, Oxford University

PRD 87,

$Z\gamma$ cross sections & aTGCs

19.1		$\sigma^{\text{ext-fid}}[\text{pb}]$		$\sigma^{\text{ext-fid}}[\text{pb}]$		
		MCFM prediction				
1.		1	$V_{jet} \ge 0$			
	$e^+e^-\gamma$	$1.30 \pm 0.03(\text{stat}) \pm 0.13(\text{syst}) \pm$	0.05(lumi)	1.18 ± 0.05		
	$\mu^+\mu^-\gamma$	$1.32 \pm 0.03(\text{stat}) \pm 0.11(\text{syst}) \pm$	0.05(lumi)	1.18 ± 0.05		
	$\ell^+\ell^-\gamma$	$1.31 \pm 0.02(\text{stat}) \pm 0.11(\text{syst}) \pm$: 0.05(lumi)	1.18 ± 0.05		
	ννγ	$0.133 \pm 0.013(\text{stat}) \pm 0.020(\text{syst})$	± 0.005(lumi)	0.156 ± 0.012		
	$N_{\rm jet}=0$					
	$e^+e^-\gamma$	$1.07 \pm 0.03(\text{stat}) \pm 0.12(\text{syst}) \pm$	0.04(lumi)	1.06 ± 0.05		
	$\mu^+\mu^-\gamma$	$1.04 \pm 0.03(\text{stat}) \pm 0.10(\text{syst}) \pm$	0.04(lumi)	1.06 ± 0.05		
	$\ell^+\ell^-\gamma$	$1.05 \pm 0.02(\text{stat}) \pm 0.10(\text{syst}) \pm$: 0.04(lumi)	1.06 ± 0.05		
	$\nu \bar{\nu} \gamma$	$0.116 \pm 0.010(\text{stat}) \pm 0.013(\text{syst})$	± 0.004(lumi)	0.115 ± 0.009		
Probe aTGCs sing events wi F ^γ >100 GeV	<i>ATLAS</i> ^{pp → ዞΓγ, pp -} 95% CL	→ $V\nabla \gamma$ 4.6 fb ⁻¹ , $\Lambda = \infty$ 5.1 fb ⁻¹ , $\Lambda = 1.5$ TeV → LAS , $\sqrt{s} = 7$ TeV = 0.0, $\sqrt{s} = 1.96$ TeV → ATLAS, $\sqrt{s} = 7$ TeV = 0.0, $\sqrt{s} = 1.96$ TeV 4.6 fb ⁻¹ , $\Lambda = 3$ TeV 7.2 fb ⁻¹ , $\Lambda = 1.5$ TeV	$\begin{array}{l} \textbf{ATLAS} \\ pp \rightarrow l^{h} \Gamma \gamma, pp \rightarrow v \nabla \gamma \\ 95\% \text{ CL} \end{array}$	ATLAS, $\sqrt{s} = 7$ TeV CDF, $\sqrt{s} = 1.96$ T 4.6 fb ⁻¹ , Λ = ∞ 5.1 fb ⁻¹ , Λ = 1.5 ATLAS, $\sqrt{s} = 7$ TeV D0, $\sqrt{s} = 1.96$ Te 4.6 fb ⁻¹ , Λ = 3 TeV 7.2 fb ⁻¹ , Λ = 1.5		
$ZZ\gamma$ vertex	h ^z	54 55 5	h ₄ ^Z	3		
Ζγγ vertex	h ₃	3	h ₄ ^γ	35		
3 June, 2014	-0.2 -0.7	15 -0.1 -0.05 0 0.05	-0.001	0 0.001		
		Coupling Strength		Coupling Strength		

11

$Z\gamma$ differential cross sections

$W\gamma$ cross sections

Select events with a lepton, photon, and large E_{T}^{miss}

	1.39	±	0.13
13			

 $\mu \nu \gamma$

10914

 $2560 \pm 270 \pm 580$

 $779 \pm 19 \pm 93$

 $184 \pm 9 \pm 15$

 $653 \pm 11 \pm 57$

 $291 \pm 29 \pm 26$

 $6440 \pm 300 \pm 590$

arext-fid [pb]

MCFM prediction

 1.96 ± 0.17

 1.96 ± 0.17

 1.96 ± 0.17

 1.39 ± 0.13

 1.39 ± 0.13

$W\gamma$ differential cross sections

Jet multiplicity distribution agrees with Alpgen (Sherpa) generator producing up to five (three) additional partons

Transverse mass of $W\gamma$ system probes for new resonances decaying to $W\gamma$

Summary

Diboson cross sections measured in 7 & 8 TeV data sets

Many measurements include unfolded differential cross sections

Anomalous-coupling limits set with 7 TeV data

Backup

entil 3

Diphoton cross section

