Flavor Physics at the LHC

Jernej F. Kamenik

Univerza v Ljubljani

Institut “Jožef Stefan”
LHC as a flavor factory

What are the unique capabilities of LHC for flavor studies? (energy, luminosity)

Which observables are most promising? (Higgs, top, CPV in charm & B_s, rare decays with di-leptons)

What have we learned already? (implications for SM hierarchy, flavor, DM puzzles, hints of NP?)

Disclaimer: personal selection of topics
Introduction

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

Unification of interactions

\[\mathcal{L}_{\nu SM} = \mathcal{L}_{\text{gauge}}(A_a, \psi_i) + D_\mu \phi^\dagger D^\mu \phi - V_{\text{eff}}(\phi, A_a, \psi_i) \]

\[V_{\text{eff}} = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 + Y_{ij} \psi^i_L \psi^j_R \phi + \frac{y_{ij}}{\Lambda} \psi^i_L \psi^j_L \phi^T \phi + \ldots \]

EW scale stabilization

Origin of flavor

Need to understand/constrain size of additional terms in series
Introduction

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

Unification of interactions

EW scale stabilization

\[\Lambda [\text{GeV}] \]

\[\mathcal{L}_{\text{BSM}} \rightarrow \mathcal{L}_{\text{SM}} + \sum_{i,(d>4)} \frac{Q_i^{(d)}}{\Lambda^{d-4}} \]

\[10^4 \quad 10^3 \quad 10^2 \]

\[10^11 \quad 10^{15} \quad 10^{19} \]

Origin of flavor

\[? \quad ? \quad ? \]
Introduction

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

Unification of interactions

EW scale stabilization

Origin of flavor

ΔF=1,2 FCNCs in K, D, B systems
Introduction

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

Unification of interactions

Origin of flavor

EW scale stabilization

\[\Lambda_{\text{GeV}} \approx 10^{2} \]

\[10^{3} \]

\[10^{4} \]

\[10^{5} \]

\[10^{6} \]

\[K^{0} - K^{0} \]

\[D^{0} - D^{0} \]

\[B^{0} - \bar{B}^{0} \]

\[B_{s} - \bar{B}_{s} \]

\[Q_{AB}^{(6)} \sim z^{ij} [\bar{q}_{i} \Gamma^{A} q_{j}] \otimes [\bar{q}_{i} \Gamma^{B} q_{j}] \]

\[\sum_{i, (d>4)} \frac{Q_{i}^{(d)}}{\Lambda^{d-4}} \]

FCNCs in K, D, B systems

QCD contributions to FCNCs

\[\Delta F = 1, 2 \text{ FCNCs} \] in K, D, B systems

\[\Lambda \text{ [GeV]} \]

\[\Lambda_{\text{TeV}} \]
Unique LHC probes of flavor

Top quark - heaviest point-like particle known to exist

⇒ O(1) coupling to the Higgs \(y_t \equiv \sqrt{2m_t/v_{EW}} \approx 1 \)

⇒ Profound effects on EW and flavor physics

Higgs boson interactions with fermions of special interest

⇒ probe existence of new flavor dynamics not too far above the electroweak scale

⇒ suppressed contributions to low energy observables lead to weak indirect constraints
Testing flavor through Higgs observables
Testing flavor through Higgs observables

BSM modifications of Yukawa sector

\[Q_Y^{(6)} \sim Y'_{ij} \psi^i_L \psi^j_R \phi(\phi^\dagger \phi) \]

In EW vacuum: \[\mathcal{L}_Y = -m_i \psi^i_L \psi^i_R - \bar{Y}_{ij} (\psi^i_L \psi^j_R) h + \text{h.c.} + \ldots \]

Generally present if more than one source of fermion masses
Testing flavor through Higgs observables

BSM modifications of Yukawa sector

\[Q_Y^{(6)} \sim Y_{ij} \psi_L^i \psi_R^j \phi(\phi^\dagger \phi) \]

In EW vacuum: \[\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + \text{h.c.} + \ldots \]

Simplest model examples:

(1) THDM III \[\mathcal{L}_{\text{THDMIII}} \ni -Y_{ij}^{(1)} \psi_L^i \psi_R^j \phi^{(1)} - Y_{ij}^{(2)} \psi_L^i \psi_R^j \phi^{(2)} + \text{h.c.} \]
\[\rightarrow \mathcal{L}_Y + \text{ couplings to heavier Higgs bosons} \]

c.f. Davidson & Greiner, 1001.0434

(2) Partial compositeness \[\mathcal{L}_{\text{PC}} \ni -y_{ij} D_L^i S_R^j \phi - \bar{y}_{ij} D_R^i S_L^j \phi \]
\[- M_D^i D_R^i D_L^i - M_S^i S_R^i S_L^i \]
\[- m_D^{ij} D_R^i \psi_L^j - m_S^{ij} S_L^i \psi_R^j + \text{h.c.} \]
\[\rightarrow \mathcal{L}_Y + \text{ couplings of heavier fermions} \]

c.f. Delaunay, Grojean & Perez, 1303.5701
Testing flavor through Higgs observables

BSM modifications of Yukawa sector

\[Q_Y^{(6)} \sim Y_{ij}^I \psi_L^i \psi_R^j \phi(\phi^\dagger \phi) \]

In EW vacuum: \[\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + \text{h.c.} + \ldots \]

Stability of fermionic mass hierarchies: \[|\bar{Y}_{ij} Y_{ji}| \lesssim \frac{m_i m_j}{v^2} \]

New neutral currents

• flavor diagonal (LHC) + EDMs if CPV
• flavor violating (flavor factories, LHC)

Brod, Haisch & Zupan, 1310.1385
Gorban & Haisch, 1404.4873
Giudice, Lebedev, 0804.1753
Agashe, Contino, 0906.1542
Goudelis, Lebedev, Park, 1111.1715
Arhrib, Cheng, Kong, 1208.4669
Alonso et al., 1212.3307
Dery et al., 1302.3229, 1304.6727
Testing flavor through Higgs observables

BSM modifications of Yukawa sector

\[Q_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^\dagger \phi) \]

In EW vacuum: \[\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + \text{h.c.} + \ldots \]

Stability of fermionic mass hierarchies:

\[|\bar{Y}_{ij} \bar{Y}_{ji}| \lesssim \frac{m_i m_j}{v^2} \]

Cheng & Sher,

New neutral currents

- flavor diagonal (LHC)
- flavor violating (flavor factories, LHC)

+ EDMs if CPV

Brod, Haisch & Zupan, 1310.1385
Gorban & Haisch, 1404.4873
Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two
generation quark Yukawas

⇒ in production

1 loop contributions to $gg \to h$ suppressed by small loop function

$$A_{1/2} \sim r_q \log r_q, \quad r_q \equiv (m_q/m_h)^2 \ll 1$$

direct $qq \to h$ suppressed by small parton luminosity functions

$$\mathcal{L}_{u\bar{u}}(m_h)/\mathcal{L}_{gg}(m_h) \sim 4\%(2\%) @ 7\text{ TeV}(14\text{ TeV}) \text{ LHC}$$

⇒ in decay:

need to compete against dominant $h \to b\bar{b}$ mode

$$|\tilde{Y}_{qq}|^2 \sim 10^{-3} \frac{\Gamma_{h \to q\bar{q}}}{\Gamma_h}^{\text{SM}} \quad \tilde{Y}_{bb}^{\text{SM}} \equiv \frac{m_b}{v} \sim 0.02$$
Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two generation quark Yukawas

⇒ Global fit to LHC Higgs signal strengths

allowing modifications in $hgg (c_g), h\gamma\gamma (c_\gamma), hqq$

Fajfer, Greljo, J.F.K. & Mustac, 1304.4219
Delaunay, Golling, Perez & Soreq, 1310.7029

Admir Greljo
private communication
see also talk by Y. Soreq
Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two generation quark Yukawas

⇒ Global fit to LHC Higgs signal strengths allowing modifications in $hgg (c_g)$, $h\gamma\gamma (c_\gamma)$, hqq

Interesting connection to di-Higgs production

$$L_Y = -(\psi_L^i \psi_R^i) \left[m_i \delta_{ij} + \bar{Y}_{ij} h + (\bar{Y}_{ij} - m_i/v \delta_{ij}) 3h^2/2v \right] + h.c.$$

$$\sigma(hh)^{u\bar{u}} / \sigma(hh)^{SM} \sim 20(11) \times |\bar{Y}_{uu}/0.01|^2 \quad \text{at 8 TeV (14 TeV) LHC}$$
Testing flavor through Higgs observables

BSM modifications of Yukawa sector

\[Q_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^\dagger \phi) \]

In EW vacuum: \[\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + \text{h.c.} + \ldots \]

Stability of fermionic mass hierarchies: \[|\bar{Y}_{ij} \bar{Y}_{ji}| \lesssim \frac{m_i m_j}{v^2} \] (Cheng & Sher, Phys.Rev. D35, 3484 (1987))

New neutral currents

- flavor diagonal (LHC)
- flavor violating (flavor factories, LHC) + EDMs if CPV

Giudice, Lebedev, 0804.1753
Agashe, Contino, 0906.1542
Goudelis, Lebedev, Park, 1111.1715
Arhrib, Cheng, Kong, 1208.4669
Alonso et al., 1212.3307
Dery et al., 1302.3229, 1304.6727
Brod, Haisch & Zupan, 1310.1385
Gorban & Haisch, 1404.4873
Testing flavor through Higgs observables

Within SM effective $Y_{i\neq j}$ extremely suppressed (GIM+CKM/m_v & chirality)

Constraints on first two generation $Y_{i\neq j}$ dominated by precision low energy observables

\[e^- \rightarrow Y_{eP} + Y_{eP} \]

\[\mu^- \rightarrow Y_{\muP} + Y_{\muP} \]

\[\tau \rightarrow \mu\gamma, \mu \rightarrow e\gamma, \text{ etc.} \]

\[g - 2, \text{ EDMs} \]

\[\tau \rightarrow 3\mu, \mu \rightarrow 3e, \text{ etc.} \]

\[M-M \text{ oscillations} \]

\[\psi_i \quad \phi \quad \psi_j \]

\[W \]

took from Joachim Kopp’s slides on LHC Results Forum (@UTexas)

Harnik, Kopp, Zupan, 1209.1397
McKeen, Pospelov, Ritz, 1208.4597
Blankenburg, Ellis, Isidori, 1202.5704
Probing Flavor Violation in Top - Higgs Sector

Top-Higgs FV interactions only enter low energy observables at loop level

⇒ EDMs still severely constrain CPV contributions

⇒ Sensitive only to certain products of couplings

Direct LHC probes

⇒ Higgs decays \[BR(h \to t^*q) \simeq \frac{\Gamma(h \to t^*q)}{\Gamma_h} \simeq 0.12(0.27|y_{tq}|^2 + |y_{qt}|^2) \]

⇒ Top Decays \[B(t \to hq) \simeq \frac{\Gamma(t \to hq)}{\Gamma(t \to W+b)} \simeq 0.29(|y_{tq}|^2 + |y_{qt}|^2) \]

⇒ Associated top-Higgs production (relevant for \(y_{tu}, y_{ut} \))

\[\sigma(pp \to th) \simeq 74 \text{ (180) pb} \times (|y_{tu}|^2 + |y_{ut}|^2) \quad @ 8\text{TeV (14TeV) LHC} \]

+ several other, less sensitive signatures
Probing Flavor Violation in Top - Higgs Sector

Top-Higgs FV interactions only enter low energy observables at loop level

⇒ EDMs still severely constrain CPV contributions

⇒ Sensitive only to certain products of couplings

Direct LHC probes

⇒ Higgs decays \[BR(h \to t^*q) \simeq \frac{\Gamma(h \to t^*q)}{\Gamma_{SM}^h} \simeq 0.12(0.27|y_{tq}|^2 + |y_{Qt}|^2) \]

⇒ Top Decays \[B(t \to hq) \simeq \frac{\Gamma(t \to hq)}{\Gamma(t \to W^+b)} \simeq 0.29(|y_{tq}|^2 + |y_{Qt}|^2) \]

⇒ Associated top-Higgs production (relevant for \(y_{tu}, y_{Ut} \))

\[\sigma(pp \to th) \simeq 74 \ (180) \ \text{pb} \times (|y_{tu}|^2 + |y_{Ut}|^2) \quad \text{@ 8TeV (14TeV) LHC} \]

+ several other, less sensitive signatures

Gorban, Haisch, 1404.4873
Greljo, J.F.K. & Kopp, 1404.1278
Atwood, Gupta & Soni, 1305.2427
Disentangling Flavor Violation in the Top - Higgs Sector at the LHC

Two complementary production processes (in case of thu)

Can be disentangled using Higgs rapidity & total event charge
Disentangling Flavor Violation in the Top - Higgs Sector at the LHC

Several competitive signatures

Multileptons

\[h \rightarrow WW^* \rightarrow \ell\ell\nu\nu, \ h \rightarrow \tau\tau, \]
\[h \rightarrow ZZ^* \rightarrow \ell\ell jj, \ h \rightarrow ZZ^* \rightarrow \ell\ell\nu\nu, \]
\[t \rightarrow b\ell^+\nu \]

- No Higgs/top reconstruction
- Many Higgs decay modes

Lepton + di-photon

\[t \rightarrow b\ell^+\nu \quad h \rightarrow \gamma\gamma \]

- Low rate
- Exclusive Higgs reconstruction

All hadronic (new)

\[h \rightarrow b\bar{b}, \ h \rightarrow gg, \ h \rightarrow \tau\bar{\tau}, \ h \rightarrow c\bar{c} \]
\[t \rightarrow bud\bar{d} \]

- Horrendous backgrounds
- Largest rate

In the boosted regime, can employ jet substructure methods

Modified HEPTopTagger of Plehn et al., 0910.5472, 1006.2833

Higgs tagging: Butterworth et al., 0802.2470

Cacciari, Salam & Soyez, 1111.6097

CMS-PAS-HIG-12-053 vector boson plus Higgs recast

CMS-PAS-HIG-13-025
(also ATLAS, arXiv:1403.6293)
Disentangling Flavor Violation in the Top - Higgs Sector at the LHC

Improving the LHC reach

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{y_{ut}^2 + y_{tu}^2}$</th>
<th>$\mathcal{B}(t \rightarrow hu)$</th>
<th>$\sqrt{y_{ct}^2 + y_{tc}^2}$</th>
<th>$\mathcal{B}(t \rightarrow hc)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>New limits from existing data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec. III A: Multilepton</td>
<td>< 0.19</td>
<td>$< 1.0%$</td>
<td>< 0.23</td>
<td>$< 1.5%$</td>
</tr>
<tr>
<td>Sec. III B: Diphoton plus lepton</td>
<td>< 0.12</td>
<td>$< 0.45%$</td>
<td>< 0.15</td>
<td>$< 0.66%$</td>
</tr>
<tr>
<td>Sec. III C: Vector boson plus Higgs</td>
<td>< 0.16</td>
<td>$< 0.70%$</td>
<td>< 0.21</td>
<td>$< 1.2%$</td>
</tr>
<tr>
<td>Projected future limits (13 TeV, 100 fb$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec. III C: Vector boson plus Higgs</td>
<td>< 0.076</td>
<td>$< 0.15%$</td>
<td>< 0.084</td>
<td>$< 0.19%$</td>
</tr>
<tr>
<td>Sec. IV A: Multilepton</td>
<td>< 0.087</td>
<td>$< 0.22%$</td>
<td>< 0.11</td>
<td>$< 0.33%$</td>
</tr>
<tr>
<td>Sec. IV B: Fully hadronic</td>
<td>< 0.12</td>
<td>$< 0.36%$</td>
<td>< 0.13</td>
<td>$< 0.48%$</td>
</tr>
</tbody>
</table>

⇒ Limits on $\mathcal{B}(t \rightarrow hu) \times 1.5$ better than on $\mathcal{B}(t \rightarrow hc)$

⇒ Future LHC searches could test $|y_{tq}| \sim 0.1$
Disentangling Flavor Violation in the Top - Higgs Sector at the LHC

Greljo, J.F.K. & Kopp, 1404.1278

Discrimination between thc & thu couplings

Possible even without explicit Higgs reconstruction (like in multilepton searches)

In \(h \rightarrow WW^{*} \rightarrow l\overline{l} \nu \nu \) use leptons closest in rapidity as proxy for \(\eta_{h} \)

Figure 5

Disentangling Flavor Violation in the Top - Higgs Sector at the LHC

Projection of multilepton search sensitivity

(using a \(\eta_{ll} \) cut \(|\eta_{ll}| > 1 \))
Probing the invisible through flavor violation at LHC
Are there only SM particles at low-energy?

Experimentally:

- Even very light states could be missed if very weakly interacting,
- There is dark matter in the Universe; it could be relatively light.

Theoretically: Plenty of models predict new light particles

- Pseudo-Goldstone scalars (axion, familon,...),
- U(1) vectors (string, ED,...),
- Hidden sectors & messengers (SUSY, mirror worlds,...)
- Many others: millicharged fermions, dilaton, majoron, neutralino, sterile neutrino, gravitino,...
Invisibles Pair Production at Hadron Colliders

General discussion in terms of EFT

\[\mathcal{L}_{\text{int}} = \sum_{a} \frac{C_a}{\Lambda^{n_a}} \mathcal{O}_a \]

- With B preservation, \(\mathcal{O}_a \) need to be bilinear in quark fields

\[
\begin{align*}
\mathcal{O}_{1a}^{ij} &= (\bar{Q}_L^i \gamma_\mu Q_L^j) \mathcal{J}_a^\mu, \\
\mathcal{O}_{2a}^{ij} &= (\bar{u}_R^i \gamma_\mu u_R^j) \mathcal{J}_a^\mu, \\
\mathcal{O}_{3a}^{ij} &= (\bar{d}_R^i \gamma_\mu d_R^j) \mathcal{J}_a^\mu, \\
\mathcal{O}_{4a}^{ij} &= (\bar{Q}_L^i H u_R^j) \mathcal{J}_a, \\
\mathcal{O}_{5a}^{ij} &= (\bar{Q}_L^i \tilde{H} d_R^j) \mathcal{J}_a,
\end{align*}
\]

- coupling to suitable dark sector currents, i.e.

\[
\mathcal{J}_{V,A}^\mu = \bar{\chi} \gamma_\mu \{1, \gamma_5\} \chi \\
\mathcal{J}_{S,P} = \bar{\chi} \{1, \gamma_5\} \chi \\
\mathcal{J} = \chi^\dagger \chi, \quad \mathcal{J}^\mu = \chi^\dagger \partial^\mu \chi
\]

\begin{align*}
\text{Fermionic} & \quad \text{Scalar}
\end{align*}
Flavor universal contributions \((C_{ij} \sim \delta_{ij})\)

\[\Rightarrow \text{mono[jet, } \gamma, \ Z, \ W\] constraints using initial state radiation for tagging

Zhou, Berge & Whiteson, 1302.3619 (see also refs. therein)
Flavor Bounds

Can flavor violating interactions be competitive?

- Constraints from $\Delta F=2$ observables

 Example:

 $$\frac{C_{1a}^{13}}{\Lambda} \lesssim \frac{1}{2 \text{ TeV}}, \quad \frac{C_{1a}^{23}}{\Lambda} \lesssim \frac{1}{0.3 \text{ TeV}},$$

 - effectively no bounds on $C_{2a,4a}^{13,23}$

- Large monotop ($t+E_{\text{miss}}$) signals possible due to chirality flipping operators

 (also $b+E_{\text{miss}}$, but can be due to flavor conserving ops.)

 - reconstruction using $j_{(b)}jj+E_{\text{miss}}$, or $j_{(b)}l+E_{\text{miss}}$

 ($\sim 1\%$ signal eff.)
Expectations in Models of Flavor

Minimal Flavor Violation

\[C_{2a} = b_{1}^{(2a)} + b_{2}^{(2a)} Y_u^\dagger Y_u + b_{3}^{(2a)} Y_u^\dagger Y_d^\dagger Y_u + \cdots, \]
\[C_{4a} = (b_{1}^{(4a)} + b_{2}^{(4a)} Y_d Y_u^\dagger + \cdots) Y_u. \]

- For \(b_1^a \sim b_2^a \sim b_3^a \) \(C_{2a} \) almost flavor diagonal and universal
- \(C_{4a} \) is highly hierarchical, can have large flavor violation if \(y_b \sim 1 \)

\[\frac{\hat{\sigma}(ug \rightarrow t + 2\chi)}{\hat{\sigma}(ug \rightarrow u + 2\chi)} \sim \left(\frac{y_t |V_{ub}| y_b^2}{y_u} \right)^2 \sim 5 \cdot 10^5 \ y_b^4, \]
\[\frac{\hat{\sigma}(cg \rightarrow t + 2\chi)}{\hat{\sigma}(cg \rightarrow c + 2\chi)} \sim \left(\frac{y_t |V_{cb}| y_b^2}{y_c} \right)^2 \sim 50 \ y_b^4. \]

Larger effects expected with horizontal symmetries

Single invisible + t Production

Corresponds to production of neutral mediators in DM models

• Example: Scalar DM (S) via (heavy \(h_2 \)) Higgs portal in THDMIII

\[
\mathcal{L}_{h_2} = \sum_{ij} \left(\tilde{y}_{ij}^u \bar{u}^i P_R u^j h_2 + \tilde{y}_{ij}^d \bar{d}^i P_R d^j h_2 \right) + \text{h.c.} + \lambda v_{EW} h_2 SS,
\]

• \(D-D \) mixing constraints

\[
|\tilde{y}_u^u \tilde{y}_u^c|, |\tilde{y}_u^t \tilde{y}_u^c| < 0.030 \times \left(\frac{m_{h_2}}{250\text{GeV}} \right)^2,
\]

\[
|\tilde{y}_u^u \tilde{y}_u^c|, |\tilde{y}_u^t \tilde{y}_u^c| < 0.0088 \times \left(\frac{m_{h_2}}{250\text{GeV}} \right)^2,
\]

\[
\sqrt{|\tilde{y}_u^u \tilde{y}_u^c \tilde{y}_u^t \tilde{y}_u^c|} < 0.0036 \times \left(\frac{m_{h_2}}{250\text{GeV}} \right)^2,
\]

Recently first experimental LHC search using hadronic final states by CMS (CMS-PAS-B2G-12-022)
Flavor probes of EW and Higgs sectors
$B_{s,d} \rightarrow \mu^+\mu^-$

Theoretically very clean (virtually no long-distance contributions)

$B_{d,SM} = (1.07 \pm 0.10) \times 10^{-10}$ \quad $\overline{B}_{s,SM} = (3.56 \pm 0.18) \times 10^{-9}$

Important effect due to $\Delta \Gamma_s \neq 0$

$\langle B(B_s \rightarrow f) \rangle[t] = \frac{1}{2} \int_0^t dt' \left[\Gamma(B_s(t') \rightarrow f) + \Gamma(\overline{B}_s(t') \rightarrow f) \right]$

de Bruyn et al., 1204.1735

Dominant parametric uncertainties

In good agreement with experiment

$\overline{B}_d^{(\text{exp})} = (3.6^{+1.9}_{-1.2}) \times 10^{-10}$ \quad $\overline{B}_s^{(\text{exp})} = (2.9^{+0.8}_{-0.6}) \times 10^{-9}$

Buras et al., 1208.0934, 1303.3820

LHCb, 1307.5024

CMS, 1307.5025
$B_{s,d} \rightarrow \mu^+\mu^-$

Particularly sensitive to FCNC scalar currents and FCNC Z penguins

Clean probe of the Yukawa interaction (⇒ Higgs sector)

beyond tree level

Latest results beginning to test possible B_d/B_s enhancement

Nontrivial test of MFV

Hurth et al., 0807.5039
Modified Z couplings

\[\mathcal{L}_\text{eff}^Z = \frac{g}{c_W} Z_\mu \bar{d}^i \gamma^\mu \left[(g_L^{ij} + \delta g_L^{ij}) P_L + (g_R^{ij} + \delta g_R^{ij}) P_R \right] d^j \]

Fixing flavor model one can compare:
flavor (non)universality (\(Z_{bb}/Z_{qq}\)) vs. flavor violation (\(Z_{bs}\))

Example: MFV

\[Q_L^{(6)} \sim c_1 L (Y_u Y_u^\dagger)_i^j \bar{Q}_L^i \gamma^\mu Q_L^j \phi \hat{D}_\mu \phi \]
\[Q_R^{(6)} \sim c_1 R Y_d^i (Y_u Y_u^\dagger)_i^j Y_d^j \bar{d}_R^i \gamma^\mu d_R^j \phi \hat{D}_\mu \phi \]

\[\delta g_L^{bs} = \frac{V_{tb} V_{ts}^*}{|V_{tb}|^2} \delta g_L^b \quad \delta g_R^{bs} = \frac{m_s V_{tb} V_{ts}^*}{m_b |V_{tb}|^2} \delta g_R^b \]

(update using the latest exp. results)

Inclusion of other \(b \to s \mu^+ \mu^-\) modes could further improve these constraints
Deconstructing $b \to s (\gamma, \ell^+ \ell^-)$ transitions

Much more information available:

<table>
<thead>
<tr>
<th>$B \to (X_s, K^*) \gamma$</th>
<th>C_7, C'_7</th>
<th>C_9, C'_9</th>
<th>C_{10}, C'_{10}</th>
<th>C_S, C'_S, C_P, C'_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to (X_s, K, K^*) \ell^+ \ell^-$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>(★)</td>
</tr>
<tr>
<td>$B_s \to \mu^+ \mu^-$</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
</tbody>
</table>

adopted from Altmannshofer @ Snowmass Intensity Frontier Workshop 2013, Argonne
$B \rightarrow K^* \ell^+ \ell^-$ anomaly

Fit of angular observables (A_{FB}, P_i) binned in low q^2 region

- Mostly sensitive to $Q_7 \sim C_7 m_b [\bar{s} \sigma_{\mu \nu} (1 + \gamma_5) b] e F^{\mu \nu}$
 $Q_9 \sim C_9 [\bar{s} \gamma_\mu (1 - \gamma_5) b] [\bar{\ell} \gamma^\mu \ell]$ (chirally flipped ops.)

- In $\sim 3\sigma$ tension with SM estimates (dominated by P_5', also A_{FB}, P_2)

- Can be reconciled by $\sim 40\%$ reduction of $\langle Q_9 \rangle$

A sign of NP? Recheck SM theory estimates

- Based on QCD factorization at large hadronic recoil
- Form factor reduction - broken by α_s (computed), $1/m_b$ (estimated) corrections
- Underestimated LD contributions? $\int d^4 x \, e^{-i q \cdot x} \langle \bar{K}^* | T \{ j^\text{em}_\mu (x), \mathcal{H}^{\text{had}, l_\mu} (0) \} | B \rangle$,
 Jager & Camalich, 1212.2263

First-principles QCD estimate possible?

Khodjamirian et al., 1006.4945
\[B \to K^* \ell^+ \ell^- \text{ anomaly} \]

Possible experimental tests:

- More inclusive observables (integrated over \(q^2 = [1, 6] \text{ GeV}^2 \))
 - less sensitive to non-local (resonance) contributions
 - fine binning could enhance sensitivity to QCD effects

- Consider high \(q^2 \) (low hadronic recoil) region
 - different theory systematics (HQET OPE)

- Complementary observables in other modes
 \((B_s \to \phi \ell^+ \ell^-, B \to K \ell^+ \ell^-, B \to X_s \ell^+ \ell^-, \ldots) \)
 - i.e. expect reduced rates compared to SM estimates
 - if due to QCD, don’t necessarily expect identical effects

- (Not too close to charm threshold!)

 - \(q^2 \) distribution
 - However, some indications that some of assumptions might be violated

- Recent indications?

 - Horgan et al., 1310.3722, 1310.3887

 - LHCb, 1307.7595

- Jager & Camalich, 1212.2263

- LHCb, 1403.8044
Conclusions

Success of SM (CKM paradigm) in describing (quark) flavor phenomena puzzling in light of EW hierarchy problem

Flavor physics intimately connected to Higgs phenomenology - directions just starting to be explored

Top-flavor processes ideal for LHC studies - interesting links to EW hierarchy, flavor, DM puzzles

Puzzling results in rare B decays due to be properly understood

see also Blanke et al., 1302.7232
Backup
Testing flavor through Higgs observables (at LHC)

Within SM effective $Y_{i\neq j}$ extremely suppressed (GIM+CKM/m_ν & chirality)

Constraints on first two generation $Y_{i\neq j}$ dominated by precision flavor observables (both lepton and quark)

Currently LHC already most constraining in τ-μ, τ-e sectors (recast of $h \rightarrow \tau \tau$)

Harnik, Kopp, Zupan, 1209.1397

McKeen, Pospelov, Ritz, 1208.4597
Blankenburg, Ellis, Isidori, 1202.5704
$B_{s,d} \rightarrow \mu^+\mu^-$

Particularly sensitive to FCNC scalar currents and FCNC Z penguins

Clean probe of the Yukawa interaction (⇒ Higgs sector)

Example: general MSSM

\[
m_h \sim 125 \text{ GeV} \quad \downarrow \quad \text{large } A_{33}
\]

Measurement with $\sigma(BR) \sim 30\%$ provides relevant constraint on such couplings below stability bounds

\[
(|A_{23}A_{33}| < 3m_{\tilde{t}_L}^2) \text{ for } m_{\tilde{t}_L} < 1 \text{ TeV} , \ m_{\tilde{t}_R} < 0.5 \text{ TeV}
\]