

Flavor Physics at the LHC

Jernej F. Kamenik

Univerza v Ljubljani

03/06/2014, New York

What are the unique capabilities of LHC for flavor studies? (energy, luminosity)

Which observables are most promising? (Higgs, top, CPV in charm & B_s, rare decays with di-leptons)

What have we learned already? (implications for SM hierarchy, flavor, DM puzzles, hints of NP?)

Disclamer: personal selection of topics

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory Unification of interactions $\mathcal{L}_{\nu \rm SM} = \left[\mathcal{L}_{\rm gauge}(A_a, \psi_i) \right] + D_{\mu} \phi^{\dagger} D^{\mu} \phi - V_{\rm eff}(\phi, A_a, \psi_i)$ $V_{\text{eff}} = \left[-\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + Y^{ij} \psi_L^i \psi_R^j \phi + \frac{(y^{ij})}{\Lambda} \psi_L^{iT} \psi_L^j \phi^T \phi + \dots\right]$ EW scale Origin of flavor stabilization

Need to understand/constrain size of <u>additional terms in</u> <u>series</u>

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory

SM phenomenologically very successful theory

Unique LHC probes of flavor

Top quark - heaviest point-like particle known to exist

 \Rightarrow O(1) coupling to the Higgs $y_t \equiv \sqrt{2}m_t/v_{\rm EW} \simeq 1$

⇒ Profound effects on EW and flavor physics

Higgs boson interactions with fermions of special interest

 \Rightarrow probe existence of new flavor dynamics not too far above the electroweak scale

⇒ suppressed contributions to low energy observables lead
 to weak indirect constraints

BSM modifications of Yukawa sector

 $\mathcal{Q}_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^{\dagger} \phi)$

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 Alonso et al., 1212.3307 Dery et al., 1302.3229, 1304.6727

In EW vacuum: $\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + h.c. + \dots$

Generally present if more than one source of fermion masses

BSM modifications of Yukawa sector

 $\mathcal{Q}_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^{\dagger} \phi)$

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 Alonso et al., 1212.3307 Dery et al., 1302.3229, 1304.6727

In EW vacuum: $\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + h.c. + \dots$

Simplest model examples:

(1) THDM III $\mathcal{L}_{\text{THDMIII}} \ni -Y_{ij}^{(1)} \psi_L^i \psi_R^j \phi^{(1)} - Y_{ij}^{(2)} \psi_L^i \psi_R^j \phi^{(2)} + \text{h.c.}$ $\rightarrow \mathcal{L}_Y + \text{ couplings to heavier Higgs bosons}$

c.f. Davidson & Greiner, 1001.0434

(2) Partial compositeness
$$\mathcal{L}_{PC} \ni -y_{ij}D_L^i S_R^j \phi - \bar{y}_{ij}D_R^i S_L^j \phi$$

(D,S - vector-like fermionic
doublets, singlets) $-M_D^i D_R^i D_L^i - M_S^i S_R^i S_L^i$
 $-m_D^{ij}D_R^i \psi_L^j - m_S^{ij}S_L^i \psi_R^j + h.c.$
 $\rightarrow \mathcal{L}_Y + \text{ couplings of heavier fermions}$
c.f. Delaunay, Grojean & Perez, 1303.5701

BSM modifications of Yukawa sector

 $\mathcal{Q}_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^{\dagger} \phi)$

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 Alonso et al., 1212.3307 Dery et al., 1302.3229, 1304.6727

In EW vacuum: $\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + h.c. + \dots$

Stability of fermionic mass hierarchies:

 $|ar{Y}_{ij}ar{Y}_{ji}|\lesssim rac{m_im_j}{v^2}$ Cheng & Sher,

Phys.Rev. D35, 3484 (1987)

New neutral currents

- flavor diagonal (LHC)
- flavor violating (flavor factories, LHC)

+ EDMs if CPV

Brod, Haisch & Zupan, 1310.1385 Gorban & Haisch, 1404.4873

BSM modifications of Yukawa sector

 $\mathcal{Q}_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^{\dagger} \phi)$

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 Alonso et al., 1212.3307 Dery et al., 1302.3229, 1304.6727

In EW vacuum: $\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + h.c. + \dots$

Stability of fermionic mass hierarchies:

$$|\bar{Y}_{ij}\bar{Y}_{ji}|\lesssim rac{m_im_j}{v^2}$$
 Cheng & Sher,

Phys.Rev. D35, 3484 (1987)

New neutral currents

- flavor diagonal (LHC)
 - flavor violating (flavor factories, LHC)

+ EDMs if CPV

Brod, Haisch & Zupan, 1310.1385 Gorban & Haisch, 1404.4873

Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two Fajfer, Greljo, J.F.K. & Mustac, 1304.4219 Delaunay, Golling, Perez & Soreq, 1310.7029

 \Rightarrow in production

1 loop contributions to $gg \rightarrow h$ suppressed by small loop function

$$\mathcal{A}_{1/2} \sim r_q \log r_q, \quad r_q \equiv \left(m_q/m_h\right)^2 \ll 1$$

direct $qq \rightarrow h$ suppressed by small parton luminosity functions

 $\mathcal{L}_{u\bar{u}}(m_h)/\mathcal{L}_{gg}(m_h) \sim 4\%(2\%) @ 7 \,\mathrm{TeV}(14 \,\mathrm{TeV}) \,\mathrm{LHC}$

 \Rightarrow in decay:

need to compete against dominant $h \rightarrow b\underline{b}$ mode

$$|\bar{Y}_{qq}|^2 \simeq 10^{-3} \Gamma_{h \to q\bar{q}} / \Gamma_h^{\rm SM} \qquad \bar{Y}_{bb}^{\rm SM} \equiv \frac{m_b}{v} \simeq 0.02$$

13

Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two Fajfer, Greljo, J.F.K. & Mustac, 1304.4219 Delaunay, Golling, Perez & Soreq, 1310.7029

⇒ Global fit to LHC Higgs signal strenghts

Admir Greljo private communication see also talk by Y. Soreq

Are Higgs couplings to light flavors SM-like?

Current Higgs data exhibit poor sensitivity to first two Fajfer, Greljo, J.F.K. & Mustac, 1304.4219 Delaunay, Golling, Perez & Soreq, 1310.7029

⇒ Global fit to LHC Higgs signal strenghts

Admir Greljo private communication see also talk by Y. Soreq

BSM modifications of Yukawa sector

 $\mathcal{Q}_Y^{(6)} \sim Y'_{ij} \psi_L^i \psi_R^j \phi(\phi^{\dagger} \phi)$

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 Alonso et al., 1212.3307 Dery et al., 1302.3229, 1304.6727

In EW vacuum: $\mathcal{L}_Y = -m_i \psi_L^i \psi_R^i - \bar{Y}_{ij} (\psi_L^i \psi_R^j) h + h.c. + \dots$

Stability of fermionic mass hierarchies:

$$|\bar{Y}_{ij}\bar{Y}_{ji}| \lesssim \frac{m_i m_j}{v^2}_{\text{Chen}}$$

Cheng & Sher, Phys.Rev. D35, 3484 (1987)

New neutral currents

- flavor diagonal (LHC)
- flavor violating (flavor factories, LHC)

+ EDMs if CPV

Brod, Haisch & Zupan, 1310.1385 Gorban & Haisch, 1404.4873

Within SM effective $Y_{i\neq j}$ extremely suppressed (GIM+CKM/ m_v & chirality)

Constraints on first two generation $Y_{i\neq j}$ dominated by precision low energy observables

$$TT = \alpha db (\overline{1} + 1)^2 + \alpha db (\overline{1} + 1)^2 + \alpha db (\overline{1} + 1) (\overline{1} + 1)^2$$

 $T = C db (\overline{1} + 1)^2 + \tilde{C} db (\overline{1} + 1)^2 + C db (\overline{1} + 1) (\overline{1} + 1)$

Greljo, J.F.K. & Kopp, 1404.1278

Two complementary production processes (in case of *thu*)

Can be disentangled using Higgs rapidity & total event

Greljo, J.F.K. & Kopp, 1404.1278

Several competitive signatures

Multileptons

$$\begin{split} h &\to WW^* \to \ell\ell\nu\nu, \ h \to \tau\tau, \\ h \to ZZ^* \to \ell\ell jj, \ h \to ZZ^* \to \ell\ell\nu\nu, \end{split}$$

 $t \to b \ell^+ \nu$

No Higgs/top reconstructionMany Higgs decay modes

CMS-PAS-HIG-13-034, CMS arXiv:1404.5801; CMS-SUS-13-002 CMS-PAS-HIG-12-053 vector boson plus Higgs recast

CMS-PAS-HIG-13-025 (also ATLAS, arXiv:1403.6293) All hadronic (new) $h \rightarrow b\bar{b}, h \rightarrow gg, h \rightarrow \tau\bar{\tau}, h \rightarrow c\bar{c}$ $t \rightarrow bu\bar{d}$

- × Horrendous backgrounds
- Largest rate

In the boosted regime, can employ jet substructure methods

modified HEPTopTagger of Plehn et al., 0910.5472, 1006.2833

Higgs tagging: Butterworth et al., 0802.2470 Cacciari, Salam & Soyez, 1111.6097

Greljo, J.F.K. & Kopp, 1404.1278

Improving the LHC reach

	$\sqrt{y_{ut}^2 + y_{tu}^2}$	$\mathcal{B}(t \to hu)$	$\sqrt{y_{ct}^2 + y_{tc}^2}$	$\mathcal{B}(t \to hc)$
New limits from existing data				
Sec. III A: Multilepton	< 0.19	< 1.0%	< 0.23	< 1.5%
Sec. III B: Diphoton plus lepton	< 0.12	< 0.45%	< 0.15	< 0.66%
Sec. III C: Vector boson plus Higgs	< 0.16	< 0.70%	< 0.21	< 1.2%
Projected future limits (13 TeV, 10	$0 { m fb}^{-1})$			
Sec. III C: Vector boson plus Higgs	< 0.076	< 0.15%	< 0.084	< 0.19%
Sec. IV A: Multilepton	< 0.087	< 0.22%	< 0.11	< 0.33%
Sec. IV B: Fully hadronic	< 0.12	< 0.36%	< 0.13	< 0.48%

 \Rightarrow Limits on $B(t \rightarrow hu) \times 1.5$ better than on $B(t \rightarrow hc)$

 \Rightarrow Future LHC searches could test $|y_{tq}| \sim 0.1$

Greljo, J.F.K. & Kopp, 1404.1278

Discrimination between thc & thu couplings

Possible even without explicit Higgs reconstruction (like in multilepton searches)

In $h \rightarrow WW^* \rightarrow I/vv$ use leptons closest in rapidity as proxy for η_h

Probing the invisible through flavor violation at LHC

Are there only SM particles at low-energy?

Experimentally:

- Even very light states could be missed if very weakly interacting,
- There is dark matter in the Universe; it could be relatively light.

Theoretically: Plenty of models predict new light particles

- Pseudo-Goldstone scalars (axion, familon,...),
- U(1) vectors (string, ED,...),
- Hidden sectors & messengers (SUSY, mirror worlds,...)
- Many others: millicharged fermions, dilaton, majoron, neutralino, sterile neutrino, gravitino,...

Invisibles Pair Production at Hadron Colliders

General discussion in terms of EFT

J.F.K. & Zupan, 1107.0623

$$\mathcal{L}_{\rm int} = \sum_{a} \frac{C_a}{\Lambda^{n_a}} \mathcal{O}_a$$

• With B preservation, O_a need to be bilinear in quark fields

$$\mathcal{O}_{1a}^{ij} = (\bar{Q}_L^i \gamma_\mu Q_L^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{2a}^{ij} = (\bar{u}_R^i \gamma_\mu u_R^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{3a}^{ij} = (\bar{d}_R^i \gamma_\mu d_R^j) \mathcal{J}_a^\mu, \\ \mathcal{O}_{4a}^{ij} = (\bar{Q}_L^i H u_R^j) \mathcal{J}_a, \qquad \mathcal{O}_{5a}^{ij} = (\bar{Q}_L^i \tilde{H} d_R^j) \mathcal{J}_a,$$

• coupling to suitable dark sector currents, i.e.

$$\mathcal{J}_{V,A}^{\mu} = \bar{\chi}\gamma^{\mu}\{1,\gamma_{5}\}\chi \quad \mathcal{J}_{S,P} = \bar{\chi}\{1,\gamma_{5}\}\chi \qquad \mathcal{J} = \chi^{\dagger}\chi, \ \mathcal{J}^{\mu} = \chi^{\dagger}\partial^{\mu}\chi$$

Fermionic Scalar

Invisibles Pair Production at Hadron Colliders

Flavor universal contributions $(C^{ij} \sim \delta^{ij})$

 \Rightarrow mono[jet, γ , Z, W] constraints using initial state radiation for tagging

s-section [cm²] s-section

Flavor Bounds

Can flavor violating interactions be competitive?

• Constraints from $\Delta F=2$ observables

 $\begin{array}{ll} \underline{\mathsf{Example:}} & \frac{C_{1a}^{13}}{\Lambda} \lesssim \frac{1}{2 \ \mathrm{TeV}}, & \frac{C_{1a}^{23}}{\Lambda} \lesssim \frac{1}{0.3 \ \mathrm{TeV}}, \end{array}$ $\bullet \ \text{effectively no bounds on} & C_{2a,4a}^{13,23} \end{array}$

• Large monotop ($t+E_{miss}$) signals possible due to chirality flipping operators

(also $b+E_{miss}$, but can be due to flavor conserving ops.)

• reconstruction using $j_{(b)}jj+E_{miss}$, or $j_{(b)}l+E_{miss}$ (~ 1% signal eff.)

Andrea, Fuks & Maltoni, 1106.6199 Alvarez, Coluccio Leskow, Drobnak & J.F.K., 1310.7600 Agram et al., 1311.6478

Expectations in Models of Flavor

d'Ambrosio et al., hep-ph/0207036

Minimal Flavor Violation

$$C_{2a} = b_1^{(2a)} + b_2^{(2a)} Y_u^{\dagger} Y_u + b_3^{(2a)} Y_u^{\dagger} Y_d Y_d^{\dagger} Y_u + \cdots,$$

$$C_{4a} = \left(b_1^{(4a)} + b_2^{(4a)} Y_d Y_d^{\dagger} + \cdots \right) Y_u.$$

- For $b_1^a \sim b_2^a \sim b_3^a$ C_{2a} almost flavor diagonal and universal
- C_{4a} is highly hierarchical, can have large flavor violation if $y_b \sim 1$

Single invisible + *t* Production

Corresponds to production of neutral mediators in DM models

• Example: Scalar DM (S) via (heavy h_2) Higgs portal in THDMIII $\mathcal{L}_{h_2}^{\tilde{y}} = \sum_{ij} \left(\tilde{y}_u^{ij} \bar{u}^i P_R u^j h_2 + \tilde{y}_d^{ij} \bar{d}^i P_R d^j h_2 \right) + \text{h.c.} + \lambda v_{\text{EW}} h_2 SS,$

Recently first experimental LHC search using hadronic final states by CMS (CMS-PAS-B2G-12-022)

Flavor probes of EW and Higgs sectors

necting the experimental with the theoretical branching ratio necting the experimental with the theoretical branching ratio to obtain a theoretical prediction for the decay rate accessible in experiments, the two brack of take into account is the effect of the non-vanishing width difference 0^{-9} this spece measured recently rather precisely [47]. Following Ref. [14], we assume the distribution, measured by the LHC experiments is the flavor-averaged timed distribution the effect of $\Delta\Gamma_s \neq 0$

 $\langle \mathcal{B}, \mathcal$

2.7%

 F_{B_s}

(200)

0.8

 $B_{s}(t) \stackrel{\text{de Brun etal. 1204,1735}}{\rightarrow}$ \overline{A} \overline{A}

 $\Pi_{ss} = \frac{\Pi}{\frac{1}{1}} = \frac{\Pi}{\frac{1}{2}} \left(\left(\Pi_{ss}^{HH} + \Pi_{ss}^{Lh} \right) \right), \qquad yy_s = \frac{\Pi_{ss}^{LL} - \Pi_{ss}^{HH}}{\frac{\Gamma_{ss}^{L}}{1}} = 000888 \pm 0.$ $\Gamma_s = \frac{TB_{ss}}{TB_s} = \frac{2}{2} \left(\Gamma_s^{H} + \Gamma_s^{L} \right), \qquad y_s = \frac{\Pi_{ss}^{LL} - \Pi_{ss}^{HH}}{\frac{\Gamma_s^{L}}{1}} = 0.088 \pm 0.014 ,$

 $\begin{array}{l} \mathcal{L}_{t} \text{the total flocally with soft he two masses of states. As disc$ integrated distributions of the etwo masses of states. As discintegrated distributions of the etwo masses of states. As discintegrated distributions of the etwo masses of states. As discussed in Ref.[%][14],integrated distributions of the etwo masses of states are ended and the etwo masses of the etwo

 $\rightarrow ff)_{[t]} \stackrel{\sim}{=} \kappa^{t}(t, y_{s}) \langle \mathcal{B}(B_{s}^{1} \rightarrow ff) \rangle_{[t=0]} = \kappa^{t}(t, y_{s}) \stackrel{\sim}{=} \kappa^{t$

Particularly sensitive to FCNC scalar currents and FCNC Z penguins

Clean probe of the Yukawa interaction (\Rightarrow Higgs sector)

beyond tree level

Latest results beginning to test possible $\mathcal{B}_d^d/\mathcal{B}_s^s$ enhancement

Nontrivial test of MFV

Hurth et al., 0807.5039

Figure 2: Correlation between the branching ratios of $B_s \to \mu^+ \mu^-$ and $B_d \to \mu^-$ and $B_d \to \mu^-$ and $B_d \to \mu^+ \mu^-$ and $B_d \to \mu^-$ and $B_d \to$

tive couplings of the Z boson to down-type quarks

l out in Refs. [4,6], there exists a wide class of models where the only relevant from the complete ZB_{COUP} and $Z \to b\bar{b}$ can be described in terms of Z-boson couplings at zero momentum transfer, defined by the following effective

$$\mathscr{L}_{\text{eff}}^{Z} = \frac{g}{c_W} Z_\mu \overline{d}^i \gamma^\mu \left[(g_L^{ij} + \delta g_L^{ij}) P_L + (g_R^{ij} + \delta g_R^{ij}) P_R \right] d^j . \tag{3}$$

the SU(2) sauge could apply the order of the case of the and $g_{L,R}^{ij}$ denote the adagnoli & Isidori 1302.3909 M couplings. In the following we employ state-of-the-art expressions to estimate 1302.3909 ntributlay or g(nqn) up versality (ZQ_{eff} st. the version of (ZDS)e the non-standard effects parameterized by $\delta g_{L}^{ij} g_{L}^{b} 0.006$ r convenience we recall the leading structure of the $g_{L,R}^{ij}$. The tree-level SM Example: MFV are $(g_{L}^{i0})_{\text{tree}}^{(6)} \cong \underline{c_{1}}_{2} \underbrace{(Y_{u}^{1}Y_{2}^{\dagger})_{sW}^{ij}}_{2} \overline{Q}_{L}^{i} \gamma_{gR}^{\mu} \underbrace{Q_{L}^{j} \phi^{\dagger} \overleftarrow{D}}_{1} \underbrace{\phi}_{m} \phi}_{Q_{R}^{i0} \downarrow \text{tree}} = \underline{d}_{3} \underbrace{g_{W}^{ij}}_{W}, \qquad (g_{L,R}^{i\neq j})_{\text{tree}} = 0. \qquad (4)$ $\mathcal{Q}_{R}^{(6)} \sim c_{1R} \underbrace{Y_{d}^{i}}_{L,R} \underbrace{(Y_{u}Y_{u}^{\dagger})_{ij}}_{Q_{d}} \underbrace{\overline{d}}_{R}^{i} \gamma^{\mu} d_{R}^{j} \phi^{\dagger} \overleftarrow{D}_{\mu} \phi}_{S} 0.002 \qquad (4)$ $P-\text{loop level the } g_{L,R}^{ii} \text{ are gauge dependent, but they assume the following simple}}$ 0.004 $\begin{aligned} \text{-independent} \quad & \text{form} \\ \delta g_L^{bs} = \frac{V_{tb} V_{ts}}{V_{tb} |_{2}^{2}} \delta g_L^{b} \quad & \delta g_R^{bs} = \frac{m_s W_{tb} (\text{or } g \to 0):}{m_s W_{tb} |_{2}^{2} \delta g_R^{b} \quad 0.000} \\ & (g_L^{ij})_{1-\text{loop}}^{(jj)} = \frac{m_t^2}{16\pi^2 v^2} V_{ti}^* V_{tj}^*, \quad & (g_R^{ij})_{1-\text{loop}}^{(g=0)} = 0 \end{aligned} \end{aligned}$ $\delta \overline{\mathcal{B}}_{s}(5 \rightarrow 0.3 \times 10^{-9})$ denote (update using the latest exp. results), $v \approx 246 \text{ GeV}$. $B_s \rightarrow \mu^+ \mu^-$ (95% C.L. now)

 $\frac{1}{e^{\operatorname{stly} g}} = \frac{1}{2} \int d^{ij} R = \frac{1}{2$

ODBERE & STOPEEESSYS

much more information other her static decreases well much more information in other $b \rightarrow static decays as well$ $Deconstructing <math>b \rightarrow s(\gamma, \ell^+ \ell^-)$ transitions progresses solve on the theory side

adopted from Altmannshofer @ Snowmass Intensity Frontier Workshop 2013, Argonne

 $B \rightarrow K^* \ell^+ \ell^$ for the matrix element of Q_{8g} . The operator Q_{8g} still provides a chiral proand the fermion line entering i^{K*} in Fig. 3 is still "hard-collinear" suc Possible experimental tests: etic 'he r

- More inclusive observables (integrated over $q^2 = [1, 6]$ GeV²) Not too close to charm threshold!
 - less sensitive to non-local (resonance) contributions
 - fine binning could enhance sensitivity to QCD effects P_5
- Consider high q^2 (low hadronic recoil) region
 - q^2 [GeV²] - different theory systematics (HQET OPE) However, some indications that some
- of assumptions might be violated Complementary observables in other modes $(B_s \to \phi \ell^+ \ell^-, B \to K \ell^+ \ell^-, B \to X_s \ell^+ \ell^-, \ldots)$
 - i.e. expect reduced rates compared to SM estimates
- Recent indications? Horgan et al., 1310.3722, 1310.3887

Jager & Camalich, 1212.2263

0.8

0.4

-0.4

-0.8

-1.2^L

LHCb,1403.8044

LHCb, 1307.7595

d by

зу а

 Q_{8g}

ibut

ontr

ccur

the

e Ca

3

- if due to QCD, don't necessarily expect identical effects and are either doubly Cabibbo-suppressed or weighted by the small Wil efficients C_{3-6} . Again, a systematic description exists within QCDF [23], Success of SM (CKM paradigm) in describing (quark) flavor phenomena puzzling in light of EW hierarchy problem

Flavor physics intimately connected to Higgs phenomenology - directions just starting to be explored

Top-flavor processes ideal for LHC studies - interesting links to EW hierarchy, flavor, DM puzzles Blanke et al., 1302.7232

Puzzling results in rare B decays due to be properly understood

Backup

Testing flavor through Higgs observables (at LHC)

Within SM effective $Y_{i\neq j}$ extremely suppressed (GIM+CKM/ m_v & chirality)

Constraints on first two generation $Y_{i\neq j}$ dominated by precision flavor observables (both lepton and quark)

Currently LHC already most constraining in τ - μ , τ -e sectors (recast $\sum_{=}^{\mathbb{R}} of h \rightarrow \tau \tau$)

$$B_{s,d} \rightarrow \mu^+\mu^-$$

Particularly sensitive to FCNC scalar currents and FCNC Z penguins

Clean probe of the Yukawa interaction $(\Rightarrow$ Higgs sector)

beyond tree level

Example: general MSSM

Measurement with $\sigma(BR) \sim 30\%$ provides relevant constraint on such couplings below stability bounds $(|A_{23}A_{33}| < 3m_{\tilde{t}_L}^2)$ for $m_{\tilde{t}_L} < 1 \text{ TeV}$, $m_{\tilde{t}_R} < 0.5 \text{ TeV}$