Jet Production in p-Pb Collisions

Megan Connors
for the ALICE Collaboration
June 3, 2014
Jets in Heavy Ion Collisions

internal probe
created early in collision
Jets in Heavy Ion Collisions

Jet finding - jet finders

Cacciari, Salam, Soyez, arXiv:0802.1189

MC: proton-proton - single event

Cacciari et al arXiv:0802.1189

internal probe
created early in collision

Cacciari et al arXiv:0802.1189

Megan Connors (Yale) --- Jet Production in p-Pb
Jets in Heavy Ion Collisions

Jet suppression observed in Pb-Pb
- Energy loss in QGP

R_{AA} = \frac{dN_{jet}^{AA}}{dp_T} \frac{N_{colli}^{pp}}{N_{evt}^{AA}}

Cacciari et al arXiv:0802.1189

Megan Connors (Yale) --- Jet Production in p-Pb
Jets in Heavy Ion Collisions

Jet suppression observed in Pb-Pb
- Energy loss in QGP

What are the Cold Nuclear Matter (CNM) effects from initial state?
- If no CNM effect expect $R_{pPb} = 1$
- Constraints on nPDF
Searching for CNM effects in p-Pb jets

- **Spectra:**
 - Quantify initial state effect to jet quenching observation

- **Fragmentation:**
 - Ratio of spectra for different R
 - j_T

- **Composition:**
 - Λ/K^0_s Ratio in jet
Jets at ALICE

EMCal is a Pb-scintillator sampling calorimeter:
- $|\eta| < 0.7$,
- $1.4 < \varphi < \pi$

-corrected for energy deposited by charged tracks

Tracking:
- $|\eta| < 0.9$, $0 < \varphi < 2\pi$

TPC: gas drift detector
ITS: silicon detector

Charged particles
$p_T > 150$ MeV/c

Neutral particles
$E_T > 300$ MeV
Tracking:
\[|\eta| < 0.9, \ 0 < \varphi < 2\pi \]
TPC: gas drift detector
ITS: silicon detector

Charged particles \[p_T > 150 \text{ MeV}/c \]

Megan Connors (Yale) --- Jet Production in p-Pb
Tracking:

$|\eta| < 0.9$, $0 < \varphi < 2\pi$

TPC: gas drift detector

ITS: silicon detector

Charged particles $p_T > 150$ MeV/c

Jets at ALICE

Megan Connors (Yale) --- Jet Production in p-Pb
Jets at ALICE

Tracking:
\[|\eta| < 0.9, \ 0 < \varphi < 2\pi \]

TPC: gas drift detector
ITS: silicon detector

Charged particles
\[p_T > 150 \text{ MeV}/c \]

Neutral particles
\[E_T > 300 \text{ MeV} \]

EMCal is a Pb-scintillator sampling calorimeter:
- \[|\eta| < 0.7, \]
- \[1.4 < \varphi < \pi \]

-corrected for energy deposited by charged tracks

Megan Connors (Yale) --- Jet Production in p-Pb
Corrections: Background Subtraction

- Estimate **background density**, ρ, on an event by event basis
- Clusterize event into jets using the k_T jet finder on tracks
- Calculate ρ^{ch} using the occupancy median method\(^2\)
 - exclude k_T jets overlapping with signal jets

$$\rho^{ch} = \text{median} \left\{ \frac{p_{T,i}}{A_i} \right\} \cdot C$$

$$C = \frac{\sum A_{\text{physical-jets}}}{\sum A_{k_T\text{jets}}}$$

2. based on S. Chatrchyan et. al. (CMS)
Corrections: Background Subtraction

- Estimate **background density**, ρ, on an event by event basis
- Clusterize event into jets using the k_T jet finder on tracks
- Calculate ρ^{ch} using the occupancy median method\(^2\)
 - exclude k_T jets overlapping with signal jets
- scale ρ^{ch} by S_{EMC} to account for the neutral energy

$$\rho^{ch} = \text{median} \left\{ \frac{p_{T,i}}{A_i} \right\} \cdot C$$

$$C = \frac{\sum A_{\text{physical-jets}}}{\sum A_{k_T\text{jets}}}$$

2. based on S. Chatrchyan et. al. (CMS)

$$\rho^{ch+em} = S_{EMC} \cdot \rho^{ch}$$

$$S_{EMC} = \frac{\sum E_T^{\text{cluster}} + \sum p_T^{\text{track}}}{\sum p_T^{\text{track}}}$$

Megan Connors (Yale) --- Jet Production in p-Pb
Corrections: Background Subtraction

- Estimate **background density**, \(\rho \), on an event by event basis
- Clusterize event into jets using the \(k_T \) jet finder on tracks
- Calculate \(\rho^{\text{ch}} \) using the occupancy median method\(^2\)
 - exclude \(k_T \) jets overlapping with signal jets
- scale \(\rho^{\text{ch}} \) by \(S_{\text{EMC}} \) to account for the neutral energy

\[
\rho^{\text{ch}} = \text{median} \left\{ \frac{p_{T,i}}{A_i} \right\} \bullet C
\]

\[
C = \frac{\sum A_{\text{physical-jets}}}{\sum A_{k_T \text{jets}}}
\]

2. based on S. Chatrchyan et. al. (CMS) JHEP08 (2012) 130 [arXiv:1207.2392]

\[
\rho^{\text{ch+em}} = S_{\text{EMC}} \bullet \rho^{\text{ch}}
\]

\[
S_{\text{EMC}} = \frac{\sum E_T^{\text{cluster}} + \sum p_T^{\text{track}}}{\sum p_T^{\text{track}}}
\]

\(\rho^{\text{ch}} \sim 3\% \) & \(S_{\text{EMC}} \sim 1\% \)
 Corrections: Unfolding

Raw Spectra (UE Subtracted)

ALICE Preliminary
p-Pb $\sqrt{s_{NN}} = 5.02$ TeV Min Bias
anti-k_t $R = 0.4$ Uncorrected

- $P_{\text{ch+em}}$ signal removal
- P_{chem} occupancy median approach
- $\rho = 0$

Detector Level

Energy Scale (5%)

Unfolding

Detector Response Matrix from PYTHIA + ALICE Simulation

Particle Level

EMCal is a Pb-scintillator tower covers:

Typical tracking efficiencies of

\[\rho_{\text{det}} = 0.4 \text{ jet} \]

The jet spectrum shown in Fig. 4 is in

\[\rho_{\text{det}} = 0.4 \text{ jet} \]

The Detector Response & Unfolding

Table 1:

\begin{tabular}{ |l|c|c| }
\hline
\textbf{Component} & \textbf{Correction} & \textbf{Uncertainty} \\
\hline
\hline
Underlying Event & 4\% & \textbf{Systematic} \\
\hline
Charged Hadron & 5\% & \textbf{Systematic} \\
\hline
\end{tabular}
Where approach, the occupancy median approach [2], is which particle came from which process. One jet are from the initial hard scattering. Some of these the underlying event and its region-to-region fluctuations, and unfolding systematics will be explored in p-Pb collisions are valuable because they include the initial state effects of nucleus-nucleus collisions without also including the final state effects. Therefore, proton-nucleus measured jet spectrum. We can quantify the systematic uncertainties.

$\text{Probability density per bin (0.1)}$

- **Correct for**:
 - Detector Effects ~10% syst unc
 - Background Fluctuations ~3% syst unc

$\delta p_T = \sum_{RC} p_T - \rho \pi R^2$

- SVD unfolding
 - unfolding systematic: ~12%
Corrections: Unfolding

Raw Spectra (UE Subtracted)

Detector Effects ~10% syst unc

Background Fluctuations ~3% syst unc

ALICE Preliminary

p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) Min Bias

anti-\(k_T \) \(R = 0.4 \) Uncorrected

\(\rho^{\text{ch+em}} \) anti-\(k_T \) signal removal

\(\rho^{\text{ch+em}} \) occupancy median approach

(Default)

\(\rho = 0 \)

\(\rho \leq 0.3 \)

\(\eta_{\text{jet}} \) < 0.3

p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

\(R = 0.4 \)

SVD unfolding

\(\delta p_T = \sum_{RC} p_T - \rho \pi R \)

- SVD unfolding

uncorrelated and contribute about 5% to the total probability of possible exclusion.

ALICE Simulation

PYTHIA-Perugia2011

pp \(\sqrt{s} = 5.02 \text{ TeV} \)

anti-\(k_T \) \(R = 0.4 \)

PYTHIA \(\rightarrow \) GEANT3

\(\delta p_T = \sum_{RC} p_T - \rho \pi R \)

production in p-Pb collisions.
\[
R_{pPb} = \frac{\frac{dN_{jet}^{pPb}}{dp_T}}{\frac{\langle N_{coll} \rangle dN_{jet}^{pp}}{dp_T}} \frac{N_{pp}}{N_{evt}^{pPb}}
\]

- 5.02 TeV pp data reference not available
- Use MC reference (PYTHIA, POWHEG)
- Large uncertainty on the MC reference
- Scale p-Pb spectrum by number of binary collisions, \(N_{coll}\)
- Data/MC consistent with no CNM effects
R=0.2 Jet Spectrum

- Data/MC consistent with no CNM effects
- Jet suppression observed in Pb-Pb due to hot medium
Jet Structure

- p-Pb ratio consistent with pp collisions at 2.76 TeV
- No modification of the jet sub-structure observed

Data is best described by PYTHIA with angular ordering

- ALICE Preliminary
- $|\eta_{\text{jet}}| < 0.5$
- $R=0.2$
- $R=0.4$

- Charged hadrons
- j_T jet axis

- p-Pb $\sqrt{s_{NN}} = 5.02$ TeV
- $\text{pp} \sqrt{s} = 2.76$ TeV

- ALICE Preliminary

- N' = 0 (normalized to bin at $\ln(j_T)$)
- $20 < p_{T,\text{ch+em}} < 30$ GeV/c
- $0.3 < p_{T,\text{assoc}} < 100$ GeV/c
- $80 < p_{T,\text{ch+em}} < 100$ GeV/c
- $0.3 < p_{T,\text{assoc}} < 100$ GeV/c

- j_T charged tracks
- Systematic uncertainty
- PYTHIA 6.4 CDF A tune
- PYTHIA 6.4 CDF A, no AO

- Megan Connors (Yale)
- ALI-PREL-75744
Charged Jets

- Similar observations from charged jet results
- Obtain pp reference for R_{pPb} at 5.02 TeV by scaling 7 TeV pp spectrum using PYTHIA
- Cross-section ratio consistent with 7 TeV pp
Jet Composition Study Motivation

- Λ/K^0_s enhancement observed in p-Pb
 - similar behavior seen in Pb-Pb
- Is the composition in the jet changing?
 - Or the underlying event?

\begin{align*}
\text{\small Physics Motivation} & \\
\text{talk: L. Milano, Tue. May 20th, 14:40, QM2014} & \\
\end{align*}
Measuring Λ/K^0_s in Jets

- Tag the hard scattering with charged jet
- Reconstruct Λ and K_s^0
 - within the jet region
 - within UE region
- Subtract UE from jet
\[\Lambda/K^0_s \] Multiplicity Dependence

- No multiplicity dependence to \(\Lambda/K^0_s \) ratio in jets
- No CNM observe in \(\Lambda/K^0_s \) composition of jets

High Multiplicity

Low Multiplicity

\[p_{\text{T,jet}} > 10 \text{ GeV/c}, \text{ anti-} k_T \]

\[|\eta_{\text{jet}}| < 0.75 \cdot R \]

\[|\eta_{V^0}| < 0.75 \]
Ratio Compared to PYTHIA

- Ratio within the jet lower than inclusive ratio
- Ratio within the jet consistent with PYTHIA
- Increased inclusive ratio due to UE

\[p_{T,jet}^{ch} > 10 \text{ GeV/c} \]

\[p_{T,jet}^{ch} > 20 \text{ GeV/c} \]
Conclusions

• Data/MC for full jets and R_{pPb} for charged jets consistent with no Cold Nuclear Matter (CNM) effects
 - Jet suppression in Pb-Pb is not initial state effect
• Jet fragmentation appears similar to pp
• No enhanced Λ/K^0_s ratio in p-Pb jets
 - jet particle composition also appears unmodified in p-Pb
 - Enhanced Λ/K^0_s ratio in p-Pb inclusive measurement due to the UE
• All p-Pb jet observables thus far:
 - p-Pb jets similar to pp/PYTHIA jets
 - No significant Cold Nuclear Matter effects found
Corrections: Background Fluctuations

- Background density fluctuations within the event
- Characterized by δp_T distribution from Random Cones

- RHS tail due to jet overlap
- Signal exclusion varied as a systematic uncertainty ($\sim 3\%$ on final spectrum)

Graph:
- ALICE Preliminary
- p-p $\sqrt{s_{NN}} = 5.02$ TeV Min Bias
- Random Cones $R = 0.4$
- $p = 0$ (Leading signal exclusion)
 - $\sigma = 1.31$ GeV/c
- $p = 1$ (No signal exclusion)
 - $\sigma = 1.68$ GeV/c
- $p = 1/N_{coll}$ (Partial signal exclusion)
 - $\sigma = 1.38$ GeV/c
 - (Default)
• Build a Response matrix
• GEANT3 simulation of ALICE detector
• PYTHIA events at 5.02 TeV
• Geometrically match detector level jets to particle level jets

Detector effects contribute: ~10% to systematic uncertainty
Charged particle R_{pPb}

- CMS, $|\eta|<1$
- ATLAS, $|\eta|<1$
- ALICE, $|\eta|<0.3$

$(Charged)$ Jet R_{pPb}

- CMS full jet, $-0.5 < \eta_{cm} < 0.5$
- ALICE charged jet, $-0.5 < \eta_{cm} < 0.5$
- ATLAS full jet, $-0.3 < \eta_{cm} < 0.3$

$pPb \sqrt{s_{NN}} = 5.02$ TeV, charged particles
Dijets in p-Pb

- intrinsic k_T + initial & final state radiation + CNM effects
- Measure transverse component of k_T vector

\[k_T = \rho_{T,\text{ch jet}}^{\text{trigger}} \sin(\Delta \varphi_{\text{dijet}}) \]

- dijets selected: $|\Delta \varphi - \pi| < \pi/3$
- k_T via dijets in p-Pb
- k_T - Intrinsic k_T + initial and final state radiation + cold nuclear matter (CNM) effects
- Radiation: soft (Gaussian) + hard from NLO (power law)
- CNM: scattering of parton in nucleus

\[\Delta \varphi_{\text{dijet}} \]

\[\text{transverse component of } k_T \text{ vector} \]

\[|k_T| \text{ (GeV/c)} \]

\[0 10 20 30 40 50 60 70 \text{ (GeV/c)} \]

\[\text{p-Pb } \sqrt{s}=5.02 \text{ TeV } 0-20\% (V0A) \]

\[20<p_{T,\text{ch jet}}^{\text{trigger}}<40 \text{ GeV/c} \]

\[1 \text{ N}_{\text{ch dijet}}^{-1} \text{ dN}_{\text{ch dijet}} \text{ d}|k_T| \]

\[|k_T| \text{ (GeV/c)} \]

\[0 10 20 30 40 50 60 70 \text{ (GeV/c)} \]

\[10^{-3} 10^{-2} 10^{-1} \]

\[\text{Statistical} \]

\[\text{Systematic} \]

\[\text{ALICE-PREL-60627} \]
k_T Width

- Calculated as variance of k_T distributions
- Increases with trigger jet p_T
- Compatible with PYTHIA
- No multiplicity dependence observed
- No CNM effects observed

Graphs

Left Graph

- **p-Pb √s=5.02 TeV 0-20% (V0A)**
- **Anti-k_T R=0.4; |Δφ_{ch dijet} - π| < π/3**
- **20< p_{assoc}^{T, ch jet} < p_{trigger}^{T, ch jet} GeV/c**
- **ALICE p-Pb**
- **PYTHIA8 pp**

Right Graph

- **p-Pb √s=5.02 TeV**
- **Anti-k_T R=0.4; |Δφ_{ch dijet} - π| < π/3**
- **60< p_{trigger}^{T, ch jet} <80 GeV/c**
- **20< p_{assoc}^{T, ch jet} < p_{trigger}^{T, ch jet} GeV/c**
- **p_T^{lead track} > 5 GeV/c**
- **V0A event class (%)**
Dijet Multiplicity Dependence

- No modification observed in high multiplicity events
- k_T width shows no multiplicity dependence