Latest CMS Heavy-Ion Results on Jets

Marguerite B. Tonjes University of Maryland for the CMS Collaboration

LHCP June 3, 2014

Compact Muon Solenoid (CMS)

What we measure

Jets: back-to-back dijets or inclusive, anti-kT algorithm, R=0.3, remove heavy ion underlying event with iterative "pileup" or Voronoi/HF algorithm

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

CMS Heavy Ion Jets, LHCP 2014

Centrality in heavy ion collisions

- In PbPb: centrality indicates:
 - Nuclear overlap
 - Number of nuclear partonic interactions
- Use the total energy measured in HF, split into percent centrality
- Glauber model of nucleonnucleon scattering relate measurement to:
 - <N_{part}>: average number of participants
 - <N_{coll}>: average number of nucleon collisions

M.L. Miller et al., Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci **57** (2007) 205

CMS: PRC 84 (2011) 024906

What happened to quenched p_T?

M. B. Tonjes (UMD)

CMS Heavy Ion Jets, LHCP 20 CMS: PRC 84 (2011) 024906

Look around jet cone

- Sum over tracks projected onto the leading jet axis
- Imbalance in jet
 cone restored by low
 p_T tracks outside the
 cone in the
 subleading direction
- ➡Need a larger cone

Some new measurements

Angular distribution of particles

9

CMS Heavy Ion Jets, LHCP 2014

M. B. Tonjes (UMD)

CMS Heavy Ion Jets, LHCP 2014

- Sum charged particles for unbalanced (A_J>0.22) dijets in central (0-30%) PbPb
 - 35 GeV/c of high p_T tracks missing from jet₂ at ΔR=0.2
 - Solve by low p_T particles up to very large ΔR = 2.0

- Sum charged particles for unbalanced (A_J>0.22) dijets in central (0-30%) PbPb
 - 35 GeV/c of high p_T tracks missing from jet₂ at ΔR=0.2
 - Solve by low p_T particles up to very large ΔR = 2.0
 - PbPb -pp: result shows a different p_T distribution

CMS-PAS-HIN-14-010

- Sum charged particles for unbalanced (A_J>0.22) dijets in central (0-30%) PbPb
 - Solution 35 GeV/c of high p_T tracks missing from jet₂ at ΔR=0.2
 - Solve by low p_T particles up to very large ΔR = 2.0
 - ◆ PbPb -pp: result shows a different p⊤ distribution
 - Take the p_T cumulative of all tracks: total angular pattern is similar in PbPb and pp

CMS-PAS-HIN-14-010

CMS Heavy Ion Jets, LHCP 2014

Jet fragmentation function in PbPb

Jet nuclear modification factor

In *central* PbPb: inclusive and b-jets show similar suppression in PbPb ($R_{AA} \approx 0.5$)

CMS Heavy Ion Jets, LHCP 2014

In **pPb** (*all centralities*), the inclusive and b-jets have no suppression (R_{pA}≈1)

CMS-PAS-HIN-14-001 CMS-PAS-HIN-12-004 M. B. Tonjes (UMD)

CMS-PAS-HIN-14-007

arXiv:1312.4198

Charged hadron pPb mystery

- PbPb shows similar suppression at high p_T for charged particles and jets
- Charged particles in pPb for all centralities show enhancement at the p_T
 - What causes this to affect charged hadrons and not jets?
 - Need pp data at 5.02 TeV

M. B. Tonjes (UMD)

CMS-PAS-HIN-14-001 CMS-PAS-HIN-12-004

CMS-PAS-HIN-12-017 CMS EPJC 72 (2012) 1945

Summary

- Jets are quenched in central PbPb, not in pPb
- ★ Charged hadrons show enhancement at high p_T in pPb
- Inclusive jets and b-jets show similar behavior
 - R_{pPb} ≈ 1
 - R_{PbPb} ≈ 0.5
- In central PbPb unbalanced dijets are balanced by low p_T tracks (<2 GeV/c) out to ΔR of 2
 - Different jet fragmentation in particle p_T for PbPb and pp
 - Angular pattern of the energy flow of tracks is similar in pp and central PbPb

Jet p_T scale and resolution comparison¹⁹

M. B. Tonjes (UMD)

Performance of HF/Voronoi UE subtraction²⁰

Sum of E_T of UE subtracted calo towers that fall in R=0.3 in random directions in MB events:

Mean random cone E_{T} as a function of η :

M. B. Tonjes (UMD)

Projection axis choice: PbPb dijet

Leading jet axis

 Δφ_{1,2} ≠ π → Projection of p_T of charged particles in small ΔR near subleading jet is smaller than those near leading jet

Dijet axis

 Restores the symmetry of particles near leading and subleading jet ----> UE cancels by azimuthal symmetry

Charged particle and jet R_{pPb} (QM2014)

22

Yen-Jie Lee QM2014

M. B. Tonjes (UMD)

Do jets get deflected in position?

23

No significant angular decorrelation across different jet p_{T,1}

M. B. Tonjes (UMD)