

ALICE Upgrades

A. Rossi, CERN on behalf of ALICE Collaboration

Layout

- Introduction
- ALICE upgrade physics goals
- Detector upgrade plans (LS2 2018)
- Expected performance on selected topics

ALICE for studying the QGP

Heavy lon Collisions produce a complex system of strongly interacting matter

- Extended size
- High temperature, high pressure
- Local thermodynamical equilibrium
- \rightarrow Phase transition to a deconfined state: **Quark Gluon Plasma**

ALICE main goals

Study the properties of the QGP:

- Collective phenomena
- Temperature(s), energy density
- Parton interaction with the medium

using several probes (light hadrons, heavy-flavour, quarkonia, jets, photons,...)

(+ extensive p-Pb and pp programme)

ALICE detector specificities

ALICE detector specificities

ALICE detector specificities

Physics goals with ALICE upgrade

Main physics topics, exploiting LHC & ALICE specific potentialities:

Precise measurement of heavy-flavour hadron production (spectrum, elliptic flow) in a wide momentum range, down to very low p_{T}

- Charm/beauty quark interaction with the QGP medium (in-medium energy loss)
- Study degree of charm thermalization and possible hadronization via coalescence
- Detect possible charm thermal production

J/ψ , ψ ' states down to zero p_{τ} in wide rapidity range

Heavy-lon session, Charmonium dissociation and regeneration pattern as a probe of colour deconfinement

Measurement of low-mass and low- p_T **di-leptons** (from $\rho, \omega, ...$ decay, in-medium $q\bar{q} \rightarrow l^+ l^-$, direct photons) \rightarrow electromagnetic radiation from QGP

- Medium temperature(s)
- Space-time evolution and equation of state of the QGP
- Chiral-symmetry restoration \rightarrow modification of ρ spectral function

... and more:

Jet quenching and fragmentation: PID of jet particle content, heavy flavour tagging

Heavy nuclear states

8

ALICE upgrade strategy

Physics Goal

High precision measurements of rare signals at low p_T which cannot be selected with a dedicated trigger (very low signal/background)

Requirements

Large event samples on tape

- → Target to $L_{int} \ge 10 \text{ nb}^{-1} \text{ Pb-Pb}$ minimum bias data + pp and p-A data
- → Factor 100 gain in statistics for minimum bias trigger over the current programme

Improve spatial precision on track and vertex position

Strategy

Upgrade ALICE readout (for several detectors) and online systems

- → Read out all Pb-Pb interactions at maximum rate of 50 kHz (set by LHC luminosity target for Pb-Pb, L=6×10²⁷cm⁻²s⁻¹) with a minimum bias trigger
- → Data reconstruction performed online

New silicon trackers: new Inner Tracking System (ITS, at mid-rapidity) and Muon Forward Tracker (MFT, at forward rapidity)

⊕ Forward trigger detectors upgrade (Fast Interaction Trigger) and a possible new forward calorimeter

ALICE heavy-ion plan

- Heavy-ion programme at LHC extended to Run 3 and Run 4
- As approved by the LHCC in December 2013
- Participation of ALICE, ATLAS, CMS, LHCb (p-Pb)

ALICE heavy-ion plan

- Heavy-ion programme at LHC extended to Run 3 and Run 4
- As approved by the LHCC in December 2013
- Participation of ALICE, ATLAS, CMS, LHCb (p-Pb)

ALICE Upgrades

DETECTOR UPGRADE

n coverage: InK1.22

New ITS

Design requirements:

- 1. Improve impact parameter resolution by a factor ~3 (5) in $r\phi$ (z)
 - → Reduce pixel size (currently 50 μ m x 425 μ m)
 - monolithic (MAPS) with size ~ 25 μm x 25 μm
 - ➔ Go closer to interaction point:
 - → new smaller beam pipe: 2.9 cm → 1.9 cm
 - → first layer with smaller radius (2.3 cm, currently 3.9 cm)
 - → Reduce material thickness: 50 µm silicon, X/X₀ from current ~1.13% to ~0.3(0.8)% per layer

2. High standalone tracking performance (efficiency, spatial and momentum

resolutions)

- ➔ Increase granularity
- → Add 1 layer (from 6 to 7)
- 3. Faster (x50) readout: Pb-Pb interactions up to 100 kHz
- **4. Maintenance:** allow for removal/insertion of faulty detector components during annual winter shutdown

New ITS: performance

TDR-017

Studies done with simulations with realistic and complete detector geometry and material budget description.

Track spatial resolution at the primary vertex

Extrapolating back to the vertex region degrades the information on the kinematics and trajectory

 \rightarrow Cannot separate prompt and displaced muons

Complementing muon spectrometer at forward rapidity

Muon Spectrometer

Muon tracks are extrapolated and matched to the MFT clusters before the absorber

5-6 planes of CMOS silicon pixel sensors (same technology as ITS):

- 50 < z < 80 cm
- Muon Absorber
 - $R_{min} \approx 2.5$ cm (beam pipe constraint)
 - 11 < R_{max} < 16 cm
 - Area ≈ 2700 cm²
 - $X/X_0 = 0.4\%$ per plane
 - Current pixel size scenario: ~25 x 25 µm²

Technical Design Report in preparation

ALICE ALICE at high rate: field cage -TPC Upgrade readout chamber

Goals

- Operate TPC at 50 kHz
- Preserving current momentum resolution and PID capability

Current TPC readout based on MWPC limits the event readout rate to 3.5 kHz

→ Upgrade TPC strategy

- New readout chambers: MWPC replaced with micropattern gaseous detectors, including GEM (Gas Electron Multiplier)
 - No gating, small ion backflow
- Redesign TPC front-end and readout electronic systems to allow for continuous readout
- Significant online data reduction to comply with the limited bandwidth
 - Online cluster finding and cluster-track association
- Using the same field cage

ALICE

Upgrade of the

Time Projection Chamber

CERN-LHCC-2013-020

ALICE-TDR-016

ALICE at high rate: TPC Upgrade

Expected performance:

- *p*_T resolution practically unchanged for TPC+ITS tracks (simulations)
- dE/dx resolution comparable to current performance (beam tests at PS)

Data flow, the new DAQ and HLT systems

EXPECTED PERFORMANCE (FOR SELECTED PHYSICS OBSERVABLES)

path length L

00000

Heavy Flavour: energy loss

- Heavy quarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Pass through the medium and interact with it, losing energy
- **Partonic energy loss** expected different for gluons, light quarks and heavy quarks. Mass effect: $\Delta E_c > \Delta E_h$

Current measurements

parton

Indication of larger energy loss for charm than beauty at high $p_{\rm T}$

However lack information at low $p_{\mathsf{T}},$ where the mass effect is expected to be larger

Heavy Flavour: energy loss

- Heavy quarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Pass through the medium and interact with it, losing energy
- **Partonic energy loss** expected different for gluons, light quarks and heavy quarks. Mass effect: $\Delta E_c > \Delta E_h$

path length L

yield in Pb - Pb

yield in pp $\times N_{coll}$

Heavy Flavour: energy loss

- Heavy quarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Pass through the medium and interact with it, losing energy
- **Partonic energy loss** expected different for gluons, light quarks and heavy quarks. Mass effect: $\Delta E_c > \Delta E_h$

yield in Pb - Pb

yield in pp $\times N_{coll}$

path length L

Heavy Flavour: energy loss

- Heavy quarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Pass through the medium and interact with it, losing energy
- **Partonic energy loss** expected different for gluons, light quarks and heavy quarks. Mass effect: $\Delta E_c > \Delta E_b$

path length L

yield in Pb - Pb

With upgrade: access to beauty at low p_{T} via:

Displaced J/ $\psi \rightarrow e^+e^$ at midrapitity down to 1 GeV/c

path length L

00000

Heavy Flavour: energy loss

- Heavy guarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Pass through the medium and interact with it, losing energy
- Partonic energy loss expected different for gluons, light quarks and heavy quarks. Mass effect: $\Delta E_c > \Delta E_h$

yield in Pb - Pb

parton

J/ψ

Heavy Flavour: hadronization

- Investigate possible baryon/meson enhancement and strangeness enhancement in charm sector
 - Radial flow effect? (velocity field → larger momentum for heavier particles)
 - Hadronization via coalescence?

> Heavy Flavour Baryon (Λ_c , Λ_b)? \leftarrow degree of thermalization of HF quarks

Heavy Flavour: hadronization

- Investigate possible baryon/meson enhancement and strangeness enhancement in charm sector
 - Radial flow effect? (velocity field → larger momentum for heavier particles)
 - Hadronization via coalescence?

Heavy Flavour Baryon (Λ_c , Λ_b)? \leftarrow degree of thermalization of HF quarks

 $Λ_c$ → pK⁻π⁺ , cτ~60 μm BR: 5.0±1.3 %

Di-electron production

One of the most fundamental measurements, sensitive to:

- chiral-symmetry restoration by modification of $\rho\text{-meson}$ spectral function
- partonic equation of state studying space-time evolution with invariant-mass and $p_{\rm T}$ distributions of dileptons
- photon thermal emission extrapolating to zero dilepton mass

Target measurements:

- di-electron yield vs. mass and p_{T} (require background subtraction)
- di-electron elliptic flow

New ITS

- Reduced combinatorial background (reduce impact of γ-conversions)
- Charm rejection

29

Di-electron production

Excess after background subtraction

current ITS and event rate: new ITS and high-rate: large statistical and systematic uncertainties precise measurement Allows for an estimation of the temperature at various phases of system expansion with 10-20% precision (stat.+syst.)

Summary: ALICE Upgrade Physics Reach

Central barrel, mid rapidity								
	Currer	$t, 0.1 { m nb}^{-1}$	Upgrade, $10 \mathrm{nb^{-1}}$					
Observable	$p_{\rm T}^{\rm min}$ (GeV/c)	statistical uncertainty	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	statistical uncertainty				
	Heavy Flav	vour						
D meson R_{AA}	1	10%	0	0.3%				
$D_s meson R_{AA}$	4	15%	< 2	3%				
D meson from B R_{AA}	3	30%	2	1~%				
J/ψ from B R_{AA}	1.5	15 % (p _T -int.)	1	5~%				
B ⁺ yield	not a	accessible	3	10%				
$\Lambda_{\rm c} R_{\rm AA}$	not a	accessible	2	15%				
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not a	accessible	2	15%				
$\Lambda_{\rm b}$ yield	not a	accessible	7	20%				
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%				
$D_{s} \text{ meson } v_2 \ (v_2 = 0.2)$	not accessible		< 2	8%				
D from B v_2 ($v_2 = 0.05$)	not accessible		2	8%				
J/ψ from B v_2 ($v_2 = 0.05$)	not accessible		1	60%				
$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not a	accessible	3	20~%				
	Dielectro	ns						
Temperature (intermediate mass)	not a	accessible		10%				
Elliptic flow $(v_2 = 0.1)$ [4]	not a	accessible		10%				
Low-mass spectral function [4]	not a	accessible	0.3	20%				
Hypernuclei								
³ _A H yield	2	18%	2	1.7~%				

 $p_{\rm T}$ coverage ($p_{\rm T}^{\rm min}$) and statistical uncertainty for current ALICE detector with original programme and upgraded ALICE with extended programme. For heavy flavour, the statistical uncertainties are given at the maximum between $p_{\rm T}$ = 2 GeV/c and $p_{\rm T}^{\rm min}$.

Improved precision

New observables accessible

Charm and beauty era of the QGP

Summary: ALICE Upgrade Physics Reach

Forward rapidity

 p_T coverage (p_T^{min}) and statistical error for current Muon Spectrometer and with the insertion of the MFT.

	MUON only		MUON + MFT		
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	uncertainty	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	uncertainty	
Inclusive $J/\psi R_{AA}$	0	5% at 1 GeV/ <i>c</i>	0	5% at 1 GeV/ <i>c</i>	
$\psi' R_{AA}$	0	30% at 1 GeV/ <i>c</i>	0	10% at 1 GeV/ <i>c</i>	Improved
Prompt $J/\psi R_{AA}$		not accessible	0	10% at 1 GeV/ <i>c</i>	
J/ψ from b -hadrons		not accessible	0	10% at 1 GeV/ <i>c</i>	precision
Open charm in single μ			1	7% at 1 GeV/ <i>c</i>	
Open beauty in single μ			2	10% at 2 GeV/ <i>c</i>	New observables
Open HF in single μ no c/b separation	4	30 % at 4 GeV/ <i>c</i>			accessible
Low mass spectral func. and QGP radiation		not accessible	1–2	20% at 1 GeV/ <i>c</i>	Charm and beauty era of the
					QGP

ALICE

Find much more in

el top

LHCC-I-022, 2012.

ALICE

Upgrade of the

Time Projection Chamber

CERN-LHCC-2013-020;

ALICE-TDR-016

CERN-LHCC-2013-019; ALICE-TDR-015

CERN-LHCC-2012-005, LHCC-G-159, 2012.

ALICE-TDR-017

ALICE Upgrades

EXTRAS

The Pixel technology

Monolithic Active Pixel Sensors (MAPS)

using Tower Jazz 0.18 μ m technology

- Chip size: 15 mm × 30 mm
- Pixel pitch ~30 μm
- Si thickness: 50 μm
- Spatial resolution: ~5 μm
- Power density < 100 mW/cm²
- Integration time < 30 μs

ASTRAL

New ITS

 η coverage: $|\eta| {<} 1.22$

Outer barrel (4 layers) 19.4 < r < 39.5 cm, x/X₀~0.8% per layer

New ITS: performance Track reconstruction efficiency

<

Results obtained from simulation with realistic and complete detector geometry and material budget description

Track spatial resolution at the primary vertex

5-6 planes of CMOS silicon pixels sensors (same technology as ITS):

- 50 < z < 80 cm
- Muon Absorber
 - $R_{min} \approx 2.5$ cm (beam pipe constraint)
 - 11 < R_{max} < 16 cm
 - Area ≈ 2700 cm²
 - $X/X_0 = 0.4\%$ per plane
 - Current pixel pitch scenario: ~25 x 25 μ m²

MFT planes are ladder assembly of active and readout zones with

CMOS sensor on both sides of the plane: no dead zone

A.Rossi

Muon Forward Tracker

ITS	MFT MFT	cone FIT
		2
Beam pipe	Beam-pipe support	Absorber

5-6 planes of CMOS silicon pixels sensors (same technology as ITS):

- 50 < z < 80 cm
- R_{min} ≈ 2.5 cm (beam pipe constraint)
- $11 < R_{max} < 16 \text{ cm}$
- Area ≈ 2700 cm²
- $X/X_0 = 0.4\%$ per plane
- Current pixel pitch scenario: ~25 x 25 μm²

Technical Design Report in preparation

ALICE at high rate

Current TPC limitations

- gating grid of readout chambers closed to avoid ion feedback
 - Limit space charge to tolerable level
 - Effective dead time ~280µs, maximum readout rate: 3.5 kHz
- alternative: gating grid always open
 - Ion feedback $\sim 10^3$ x ions generated in drift volume
 - Large space charge effects (of the order of electrical field)
 - Space point distortions (at 50kHz) of order of 1 m not tolerable!!

Our TPC Multi Wire Proportional Chambers not compatible with 50kHz operations!

ALICE at high rate: TPC Upgrade

GEM technology already used in particle physics (COMPASS, LHCb, PHENIX, TOTEM) **Extensive dedicated studies started in 2012**

Technology choice:

A.Rossi

- Baseline: stack of standard (S) and large pitch (LP) 4 GEM foils
- Alternatives: 2 GEM + MicroMegas (MMG)
- Ion backflow (<1% at gain=2000)
- Gain stability
- Discharge probability
- Large size prototype
- Electronics R&D
- Garfield simulations
- Performance & physics simulations

Collaboration with RD51 at CERN

ALICE at high rate: TPC Upgrade

GEM technology already used in particle physics (COMPASS, LHCb, PHENIX, TOTEM)

Extensive dedicated studies started in 2012

Technology choice:

A.Rossi

- Baseline: stack of 4 GEM foils
- Alternatives: 2 GEM + MicroMegas (MMG)
- lon backflow (<1% at gain=2000)

Collaboration with RD51 at CERN

Performance & physics simulations

۲

PID

p=1 GeV/c

pions

Pile-up effect

Heavy Flavour: production

- Heavy quarks are produced mainly at the beginning of the collision in hard-scattering processes (high Q^2)
- Possible charm thermal production?
 - may increase the yield of charm hadrons at low p_T by up to 50-100%
- Need to measure open charm production down to p_T=0
 - Current measurement down to p_T=1 GeV/c
 - ...very unlikely to go at 0 -> ITS upgrade fundamental
- This would provide the natural normalization for total charmonium production (main uncertainty for regeneration models.).

Significance>100 with 10 nb⁻¹

Quarkonia: expected performance

Factor 10 improvement with upgrade at central rapidity (di-electron channel)!

Factor 3 at forward rapidity (di-muon) w/o MFT

With MFT further S/B improvement by factor ~6-7 via PCA selection

Precise J/ ψ v₂ measurement also at central rapidity

ψ(2s): can discriminate between kinetic and statistical models

Heavy Flavour: hadronization

- baryon/meson enhancement and strangeness enhancement in charm sector
 - Radial flow effect? (velocity field->larger momentum for more massive particles)
 - Hadronization via coalescence?

>Charm strange meson, D_s: recombination with strange quarks from the medium?

Heavy Flavour: hadronization

- baryon/meson enhancement and strangeness enhancement in charm sector
 - Radial flow effect? (velocity field->larger momentum for more massive particles)
 - Hadronization via coalescence?

Heavy Flavour Baryon (Λ_c , Λ_b)? \leftarrow degree of thermalization of HF quarks

ALICE Upgrades

LHCP, New York, 2-7/06/2014

A.Rossi ALICE

How can we measure medium effects?

1) Nuclear modification factor (R_{AA}): compare particle production in Pb-Pb with that in pp scaled by a "geometrical" factor (from Glauber model)

If $R_{AA}=1 \rightarrow$ no nuclear effects if $R_{AA}\neq 1 \rightarrow$ binary scaling broken

2) Elliptic flow v_2 (azimuthal anisotropy): study azimuthal distribution of produced particle w.r.t. the reaction plane (Ψ)

Heavy Flavour: Elliptic flow

Initial azimuthal anisotropy converted to a momentum anisotropy via hydrodynamic processes

HF elliptic flow (v_2) sensitive to:

- Thermalization of c and b quarks in the QGP
- Heavy-quark diffusion coefficient of the QGP, which characterizes its coupling strength
- Path-length dependence of energy loss at high p_t

Heavy Flavour: Elliptic flow

Initial azimuthal anisotropy converted to a momentum anisotropy via hydrodynamic processes


```
\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos[2(\varphi - \Psi_2)]}{1 + \dots}\right)
```

HF elliptic flow (v_2) sensitive to:

- Thermalization of c and b quarks in the QGP
- Heavy-quark diffusion coefficient of the QGP, which characterizes its coupling strength
- Path-length dependence of energy loss at high p_t

HF jets withALICE Upgrade

D meson in jets

Study modification to fragmentation function in the medium

52

Heavy Nuclear States

- high statistics mass-4 and -5 (anti-)hypernuclei
- search for H-dibaryon, Λn bound state, etc.
- Upgrade->increase statistics by 10³

ALICE detector strength

ALICE detector strength

Particle identification in a wide momentum range

ALICE Summary: ALICE detector upgrade

New Inner Tracking System (ITS)

A.Rossi

- improved pointing precision
- less material -> thinnest tracker at the LHC

Muon Forward Tracker (MFT)

- new Si tracker
- Improved MUON pointing precision

MUON ARM • continuous readout

electronics

Time Projection Chamber (TPC)

- new GEM technology for readout chambers
- continuous readout
- faster readout electronics

New Central Trigger Processor

Data Acquisition (DAQ)/ High Level Trigger (HLT)

- new architecture
- on line tracking & data compression
- 50 kHz Pb-Pb event rate

TOF, TRD

Faster readout

New Trigger Detectors (FIT)