Flow and soft phenomena in heavy-ion collisions

Wei Li
Rice University

Latest results at Quark Matter 2014: http://qm2014.gsi.de
Emergent phenomena in QCD

Soft QCD is the least understood part of standard model
Emergent phenomena in QCD

Soft QCD is the least understood part of standard model

“A” → “More is different” – P. W. Anderson

“More is different” – P. W. Anderson
Emergent phenomena in QCD

Soft QCD is the least understood part of standard model

“More is different” – P. W. Anderson

In heavy-ion collisions: search for and study emergent phenomena in many-body QCD system
Discovery of a “nearly perfect” liquid at RHIC

elliptic flow:

\[\frac{dN}{d\Delta \phi} \sim 1 + 2v_2 \cos[2(\phi - \Psi_{EP})] \]
Discovery of a “nearly perfect” liquid at RHIC

Strong collectivity of final-state particles discovered at RHIC

Behaving as a strongly coupled liquid with minimal frictional resistance (η/s)
QGP and flow at the LHC

![Graph showing the increase in total transverse energy (E_T) with
\(\sqrt{s_{NN}} \) from RHIC to LHC.]

2 TeV per unit \(\eta \)

Total transverse energy (E_T)

- **FOPI, 0-1% AuAu**
- **E802, 0-5% AuAu**
- **NA49, 0-7% PbPb**
- **WA98, 0-5% PbPb**
- **PHENIX, 0-5% AuAu**
- **CMS, 0-5% PbPb**

3-fold increase from RHIC to LHC

A hotter QGP!
QGP and flow at the LHC

Total transverse energy (E_T)

2 TeV per unit η

3-fold increase from RHIC to LHC

A hotter QGP!

Strong collective flow persists at the LHC

FOPI, 0-1% AuAu
E802, 0-5% AuAu
NA49, 0-7% PbPb
WA98, 0-5% PbPb
PHENIX, 0-5% AuAu
CMS, 0-5% PbPb

RHIC parametrization

$0.46 \sqrt{s_{NN}} \gtrsim 8.7$ GeV

PRL 109 (2012) 152303

arXiv:1405.3936
Elliptic flow at the LHC

\[v_2 \text{ vs } p_T \]

PRC 87(2013) 014902

- CMS PbPb $\sqrt{s_{NN}} = 2.76$ TeV
- STAR AuAu $\sqrt{s_{NN}} = 200$ GeV

CMS fit

Similar flow at RHIC and the LHC
Elliptic flow at the LHC

Similar flow at RHIC and the LHC
Flow with identified particles

- Mass ordering at low p_T: Smaller v_2 for heavier particles
- v_2(baryon) > v_2 (meson) at higher p_T

ALICE PbPb 2.76 TeV
10-20% centrality

π, K, p, ϕ, Λ, Ξ, Ω
Flow with identified particles

- Mass ordering at low p_T: Smaller v_2 for heavier particles
- v_2(baryon) $> v_2$ (meson) at higher p_T

In hydro, radial flow boosts heavier particles to higher p_T

$\Delta p_T \sim m \beta_T$
Flow, two-particle correlations, ridge …

\[\sim 1 + 2(v_2^2) \cos(2\Delta \phi) \]

CMS PbPb 2.76 TeV
35-40%

\[|\Delta \eta| > 2 \]

\[\Psi_{EP} \]

\[\Delta \phi \]

\[1 \]

\[2 \]

\[N_{\text{pair}} \]

\[\frac{1}{N_{\text{pair}}} \frac{dN}{d\Delta \phi} \]

arXiv:1201.3158
Flow, two-particle correlations, ridge ...

Elliptic flow is long-range in pseudorapidity (η)

$\Delta\eta$-$\Delta\phi$ correlation:

CMS PbPb 2.76 TeV

No near-side ridge in MB pp

(b) MinBias, 1.0 GeV/c < p_T < 3.0 GeV/c

Too small object to thermalize

~ $1 + 2(v_2^2)$ cos(2$\Delta\phi$)

arXiv:1201.3158
Flow, two-particle correlations, ridge ...

Elliptic flow is long-range in pseudorapidity (\(\eta\))

\(\Delta\eta-\Delta\phi\) correlation:

CMS PbPb 2.76 TeV

35-40%

central PbPb events

CMS Preliminary
PbPb \(\sqrt{s_{NN}} = 2.76\) TeV

arXiv:1201.3158

\(\sim 1 + 2(v_2^2)^2 \cos(2\Delta\phi)\)
Initial “QGP shape” includes higher multipole components

\[\bar{\varepsilon}_2 \bar{\varepsilon}_3 \bar{\varepsilon}_4 = \varepsilon_2 \cos 2 \Delta \phi + \varepsilon_3 \cos 3 \Delta \phi + \varepsilon_4 \cos 4 \Delta \phi + \varepsilon_5 \cos 5 \Delta \phi + \ldots \]
Higher-order deformation of initial state

Initial "QGP shape" includes higher multipole components

\[\epsilon_2 \cos 2\Delta \phi + \epsilon_3 \cos 3\Delta \phi + \epsilon_4 \cos 4\Delta \phi + \epsilon_5 \cos 5\Delta \phi + \ldots \]

ALICE
Pb-Pb 2.76 TeV, 0-2% central

\[\chi^2/\text{ndf} = 33.3 / 35 \]

PLB 708 (2012) 249

Wei Li (Rice) LHCP 2014
Higher-order deformation of initial state

Initial "QGP shape" includes higher multipole components

\[\varepsilon_2 \cos 2\Delta\phi + \varepsilon_3 \cos 3\Delta\phi + \varepsilon_4 \cos 4\Delta\phi + \varepsilon_5 \cos 5\Delta\phi + \ldots \]

Hydro faithfully transposes the initial shape into final-state particle azimuthal distributions
Flow in ultra-central PbPb collisions

Initial-state geometry dominated by density perturbations

PbPb collisions with $b \sim 0$, almost symmetric on average
Flow in ultra-central PbPb collisions

Initial-state geometry dominated by density perturbations

Top 0.2% central

PbPb collisions with b ~ 0, almost symmetric on average

Better agreement by including nucleon-nucleon correlations and bulk viscosity

CMS
PbPb $\sqrt{s_{NN}} = 2.76$ TeV
0.3<\(p_T\)<3 GeV/c

VISH2+1 Hydro
- Glauber, $\eta/s=0.08$
- MC-KLN, $\eta/s=0.2$

Wei Li (Rice)

LHCP 2014
Flow in ultra-central PbPb collisions

Initial-state geometry dominated by density perturbations

Top 0.2% central

PbPb collisions with $b \sim 0$, almost symmetric on average

Better agreement by including nucleon-nucleon correlations and bulk viscosity
Flow in ultra-central PbPb collisions

Initial-state geometry dominated by density perturbations

Top 0.2% central

PbPb collisions with $b \sim 0$, almost symmetric on average

Better agreement by including nucleon-nucleon correlations and bulk viscosity

η/s indeed very small: $\sim 0.08 - 0.2$
Flow in ultra-central PbPb collisions

Initial-state geometry dominated by density perturbations

Top 0.2% central

JHEP 02 (2014) 088

CMS
PbPb $\sqrt{s_{\text{NN}}}$ = 2.76 TeV
0.3<p_T<3 GeV/c

VISH2+1 Hydro
- Glauber, $\eta/s=0.08$
- MC-KLN, $\eta/s=0.2$

Better agreement by including nucleon-nucleon correlations and bulk viscosity

Mapping out propagation of initial perturbations as system evolves
Event-by-event flow fluctuations

Initial-state geometry fluctuates on an \textit{event-by-event} basis
Event-by-event flow fluctuations

Initial-state geometry fluctuates on an **event-by-event** basis

So does the response of final-state flow effect (v_n, Φ_n)?

\[
\frac{dN}{d\phi} \propto 1 + 2 \sum_n v_n \cos n (\phi - \Phi_n)
\]
Event-by-event flow fluctuations

Full event-by-event v_2 distribution (unfolded for finite resolution)

- ATLAS Pb+Pb
- $p_T > 0.5$ GeV, $|\eta| < 2.5$
- $|s_{NN}| = 2.76$ TeV
- $L_{int} = 7 \mu b^{-1}$

JHEP 11 (2013) 183
Event-by-event flow fluctuations

Full event-by-event v_2 distribution (unfolded for finite resolution)

Successfully described by hydrodynamics, again
More on flow fluctuations …

Correlation between different Event plane angle (Φ_2 and Φ_4)

Anti-correlations between v_2 and v_3, expected from initial geometry

arXiv:1403.0489
“Nearly perfect liquid” paradigm of heavy-ion collisions firmly established at RHIC and the LHC

A phase of precision measurement, aiming to quantify the properties of QGP in detail
Breaking news In 2010:

A near-side ridge in pp at the LHC!

- pp 7 TeV, N>=110
- 1<p_T<3 GeV/c
- 0-0.0007% central

JHEP 09 (2010) 091
A big strike in 2010 ...

Breaking news In 2010:

A near-side ridge in pp at the LHC!

pp 7 TeV, N>=110
1<p_T<3 GeV/c

0-0.0007% central

Mini-QGP fluid (r ~ 1 fm) in pp?

JHEP 09 (2010) 091
A big strike in 2010 …

Breaking news in 2010:

A near-side ridge in pp at the LHC!

pp 7 TeV, $N \geq 110$

$1 < p_T < 3$ GeV/c

0-0.0007% central

Mini-QGP fluid ($r \sim 1$ fm) in pp?

Beginning of a second “discovery” phase

JHEP 09 (2010) 091
The ridge is everywhere: pPb at the LHC

pp 7 TeV, N>=110

CMS Preliminary
PbPb \sqrt{s_{NN}} = 2.76 TeV

35-40%
The ridge is everywhere: pPb at the LHC

PP 7 TeV, N>=110

CMS pPb $\sqrt{s_{NN}} = 5.02$ TeV, $N_{trig}^{mm} \geq 110$

CMS Preliminary

PbPb $\sqrt{s_{NN}} = 2.76$ TeV

PRL 110 (2013) 182302

ATLAS p+Pb $\sqrt{s_{NN}}$=5.02 TeV, $\int L = 1 \mu b^{-1}$

Pb 35-40%

PLB 718 (2013) 795
The ridge is everywhere: pPb at the LHC

pp 7 TeV, N>=110

CMS pPb $\sqrt{s_{NN}} = 5.02$ TeV, $N_{trig}^{miss} \geq 110$

$1 < p_T < 3$ GeV/c

PLB 718 (2013) 795

Ridge in dAu at RHIC!

arXiv:1404.7461

CMS Preliminary

Ridge in dAu at RHIC!
Flow (v_n) in pPb

Fourier again ...

ATLAS Preliminary

$\sqrt{s_{NN}} = 5.02$ TeV

$L_{int} = 28$ nb$^{-1}$

$p+Pb$

$220 \leq N_{ch}^{\text{rec}} < 260$

$1 < p_T^b < 3$ GeV, $|\Delta \eta| > 2$

- $n=2$
- $n=3$
- $n=4$
- $n=5$

CMS, $220 \leq N_{\text{trk}}^{\text{off}} < 260$

- v_2, $N_{\text{trk}}^{\text{off}} < 20$ sub.
- v_3, $N_{\text{trk}}^{\text{off}} < 20$ sub.

ATLAS-CONF-2014-021

LHCP 2014
Flow (v_n) in pPb

Fourier again ...

ATLAS Preliminary

220 ≤ N_{ch}^{MC} < 260
1 < p_T^b < 3 GeV, $|\Delta \eta| > 2$

n=2
n=3
n=4
n=5

CMS, 220 ≤ N_{trk}^{off} < 260

V_2, N_{trk}^{off} < 20 sub.
V_3, N_{trk}^{off} < 20 sub.

Intriguing similarity between pPb and PbPb!
Triangular flow nearly identical in pPb and PbPb!

Triangularity entirely from fluctuations, maybe system size does not matter?

Teaney, arXiv:1312.6770
Triangular flow nearly identical in pPb and PbPb!

But, hydro. failed to describe the data

\[\varepsilon_3 \text{ driven by proton, which is too small since proton is spherical in the model} \]

Tianey, arXiv:1312.6770
Flow (v_n) in pPb

Triangular flow nearly identical in pPb and PbPb!

But, hydro. failed to describe the data

ε₃ driven by proton, which is too small since proton is spherical in the model

Stringy proton from quantum fluctuations caught by a nucleus?

Teaney, arXiv:1312.6770

PrD 89, 025019 (2014)
Mass splitting of v_2 in pPb:

- Smaller v_2 for heavier particles at low p_T
- Consistent with hydro.
PID v_n in pPb

Strange hadrons: K^0_S and Λ

- Smaller v_2 for heavier particles at low p_T
- Consistent with hydro.

Clear crossing at $p_T \sim 2$ GeV
Mass splitting of v_2 in pPb:
- Smaller v_2 for heavier particles at low p_T
- Consistent with hydro.

Clear crossing at $p_T \sim 2$ GeV

No mass dependence of Jet correlations at low N_{trk}
Larger mass splitting in pPb than in PbPb at similar multiplicity

⇒ Stronger radial flow for smaller and denser system?
True collectivity in pPb?

The key question:

Does the ridge involve only two particles or more?
True collectivity in pPb?

The key question:

Does the ridge involve only two particles or more?

Or namely, is it a collective effect as hydro. describes?
True collectivity in pPb?

The key question:

Does the ridge involve only two particles or more?

Or namely, *is it a collective effect as hydro. describes?*

Multi-particle (>2) correlations:

\[
\langle \cos 2(\phi_1 - \phi_2) \rangle \sim (v_2)^2
\]

\[
\langle \cos 2(\phi_1 + \phi_2 - \phi_3 - \phi_4) \rangle \sim (v_2)^4
\]

\[
\langle \cos 2(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6) \rangle \sim (v_2)^6
\]

In hydrodynamics:

\[v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\infty\}\]
True collectivity in pPb?

\[v_{2\{2\}} > v_{2\{4\}} \]
(event-by-event fluctuations)

Left Panel:
- PbPb \(\sqrt{s_{NN}} = 2.76 \) TeV
- \(0.3 < p_T < 3.0 \) GeV/c; \(|\eta| < 2.4 \)

Right Panel:
- pPb \(\sqrt{s_{NN}} = 5.02 \) TeV
- \(0.3 < p_T < 3.0 \) GeV/c; \(|\eta| < 2.4 \)

\(v_2 \) vs. \(N_{\text{offline}}^\text{trk} \) (event multiplicity)
True collectivity in pPb?

\[v_2\{2\} > v_2\{4\} \approx v_2\{6\} \]

(event-by-event fluctuations)
True collectivity in pPb?

$v_2^2 > v_2^4 \approx v_2^6 \approx v_2^8$

(event-by-event fluctuations)
True collectivity in pPb?

$v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\text{LYZ, } \infty\}$

(event-by-event fluctuations)

Direct evidence of strong collectivity in pPb!
Toward a unified picture from pp, pA to AA

![Graph showing v3 vs. N_{tracks} (multiplicity) for CMS, pA, and AA with various data points and curves.](image)

- CMS: 0.3 < p_T < 3 GeV/c
- pA: v_3 (N_{tracks} < 2.4)
- AA: v_3 (N_{tracks} > 2.4)

Legend:
- Red circles: PbPb $\sqrt{s_{NN}} = 5.02$ TeV, v_3 (2, |$$\eta$$|>2)
- Blue squares: PbPb $\sqrt{s_{NN}} = 2.76$ TeV, v_3 (2, |$$\eta$$|>2)
- Blue squares: PbPb $\sqrt{s_{NN}} = 2.76$ TeV, v_3 (EP, <$$p_T$$> = 1.6)
- Black line: Hydro PbPb, IP-Glasma, p_T > 0.2 GeV/c
Toward a unified picture from pp, pA to AA

Hydrodynamics paradigm in AA
Toward a unified picture from pp, pA to AA

Discovery of *collective* “flow” phenomena in pA

Hydrodynamics paradigm in AA
Toward a unified picture from pp, pA to AA

Discovery of *collective* “flow” phenomena in pA

Other interpretations:
- Quantum entanglement of gluons: PRD 87 (2013) 094034
Toward a unified picture from pp, pA to AA

Discovery of collective “flow” phenomena in pA

Other interpretations:
- Quantum entanglement of gluons: PRD 87 (2013) 094034

Hydrodynamics paradigm in AA

- Is it also collectivity in pp?
- Jet quenching in pp and pA?
- If indeed everything flows, what’s the mechanism of thermalization?
Toward a unified picture from pp, pA to AA

Discovery of collective “flow” phenomena in pA

Other interpretations:
- Quantum entanglement of gluons: PRD 87 (2013) 094034

- Is it also collectivity in pp?
- Jet quenching in pp and pA?
- If indeed everything flows, what’s the mechanism of thermalization?

Stay tuned for more excitements!
Backup