

Flow and soft phenomena in heavy-ion collisions

Wei Li Rice University

Latest results at Quark Matter 2014: http://qm2014.gsi.de

Emergent phenomena in QCD

Soft QCD is the least understood part of standard model

Emergent phenomena in QCD

Soft QCD is the least understood part of standard model

"More is different" – P. W. Anderson

Emergent phenomena in QCD

Soft QCD is the least understood part of standard model

"More is different" – P. W. Anderson

In heavy-ion collisions: search for and study emergent phenomena in many-body QCD system

Discovery of a "nearly perfect" liquid at RHIC

Discovery of a "nearly perfect" liquid at RHIC

Strong collectivity of final-state particles discovered at RHIC

Behaving as a strongly coupled liquid with minimal frictional resistance (η /s)

QGP and flow at the LHC

3-fold increase from RHIC to LHC

A hotter QGP!

QGP and flow at the LHC

Elliptic flow at the LHC

Similar flow at RHIC and the LHC

Elliptic flow at the LHC

Similar flow at RHIC and the LHC

Flow with identified particles

- Mass ordering at low p_T: Smaller v₂ for heavier particles
- v₂(baryon) > v₂ (meson) at higher p_T

Flow with identified particles

Flow, two-particle correlations, ridge ...

Flow, two-particle correlations, ridge ...

Elliptic flow is long-range in pseudorapidity (η)

LHCP 2014

Flow, two-particle correlations, ridge ...

Elliptic flow is long-range in pseudorapidity (η)

Higher-order deformation of initial state

Initial "QGP shape" includes higher multipole components

Higher-order deformation of initial state

Initial "QGP shape" includes higher multipole components

Higher-order deformation of initial state

Initial-state geometry dominated by density perturbations

PbPb collisions with $b \sim 0$, almost symmetric on average

Initial-state geometry dominated by density perturbations

PbPb collisions with $b \sim 0$, almost symmetric on average

Better agreement by including nucleonnucleon correlations and bulk viscosity

Initial-state geometry dominated by density perturbations

PbPb collisions with $b \sim 0$, almost symmetric on average

Damping of higher-order perturbations due to viscosity

Better agreement by including nucleonnucleon correlations and bulk viscosity

Initial-state geometry dominated by density perturbations

Better agreement by including nucleonnucleon correlations and bulk viscosity PbPb collisions with $b \sim 0$, almost symmetric on average

Damping of higher-order perturbations due to viscosity

η /s indeed very small: ~ 0.08 – 0.2

Initial-state geometry dominated by density perturbations

Better agreement by including nucleonnucleon correlations and bulk viscosity Mapping out propagation of initial perturbations as system evolves

Event-by-event flow fluctuations

Initial-state geometry fluctuates on an *event-by-event* basis

Event-by-event flow fluctuations

Wei Li (Rice)

LHCP 2014

Full event-by-event v_2 distribution (unfolded for finite resolution)

Event-by-event flow fluctuations

Full event-by-event v_2 distribution (unfolded for finite resolution)

More on flow fluctuations ...

Correlation between different Event plane angle (Φ_2 and Φ_4)

Anti-correlations between v_2 and v_3 , expected from initial geometry

More on flow fluctuations ...

Correlation between different Event plane angle (Φ_2 and Φ_4)

Anti-correlations between v_2 and v_3 , expected from initial geometry

- "Nearly perfect liquid" paradigm of heavy-ion collisions firmly established at RHIC and the LHC
- A phase of precision measurement, aiming to quantify the properties of QGP in detail

A big strike in 2010 ...

Breaking news In 2010: *A near-side ridge in pp at the LHC!*

A big strike in 2010 ...

Breaking news In 2010: *A near-side ridge in pp at the LHC!*

A big strike in 2010 ...

Breaking news In 2010: *A near-side ridge in pp at the LHC!*

Beginning of a second "discovery" phase

LHCP 2014

The ridge is everywhere: pPb at the LHC

The ridge is everywhere: pPb at the LHC

The ridge is everywhere: pPb at the LHC

LHCP 2014

LHCP 2014

Triangular flow nearly identical in pPb and PbPb!

Triangularity entirely from fluctuations, maybe system size does not matter?

Teaney, arXiv:1312.6770

Triangularity entirely from fluctuations, maybe system size does not matter?

Teaney, arXiv:1312.6770

But, hydro. failed to describe the data

is too small since proton is spherical in the model

Triangularity entirely from fluctuations, maybe system size does not matter?

Teaney, arXiv:1312.6770

But, hydro. failed to describe the data

 ϵ_3 driven by proton, which is too small since proton is spherical in the model

Stringy proton from quantum fluctuations caught by a nucleus?

PRD 89, 025019 (2014)

PID v_n in pPb

Mass splitting of v_2 in pPb:

- Smaller v₂ for heavier particles at low p_T
- > Consistent with hydro.

PID v_n in pPb

Strange hadrons: K_{s}^{0} and Λ

Mass splitting of v_2 in pPb:

- Smaller v₂ for heavier particles at low p⊤
- Consistent with hydro.

Clear crossing at $p_T \sim 2 \text{ GeV}$

PID v_n in pPb

PID v_n in pPb

→ Stronger radial flow for smaller and denser system?

LHCP 2014

The key question:

Does the ridge involve only two particles or more?

The key question:

Does the ridge involve only two particles or more?

Or namely, is it a collective effect as hydro. describes?

The key question:

Does the ridge involve only two particles or more?

Or namely, is it a collective effect as hydro. describes?

Multi-particle (>2) correlations:

$$\left\langle \cos 2(\phi_1 - \phi_2) \right\rangle \sim (v_2)^2$$
$$\left\langle \cos 2(\phi_1 + \phi_2 - \phi_3 - \phi_4) \right\rangle \sim (v_2)^4$$
$$\left\langle \cos 2(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6) \right\rangle \sim (v_2)^6$$

In hydrodynamics:

 $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8} \approx v_2{\infty}$

LHCP 2014

 $v_{2}{2} > v_{2}{4}$

(event-by-event fluctuations)

PLB724 (2013) 213

 $v_{2}{2} > v_{2}{4} \approx v_{2}{6}$

(event-by-event fluctuations)

CMS PAS HIN-14-006

 $v_{2}{2} > v_{2}{4} \approx v_{2}{6} \approx v_{2}{8}$

(event-by-event fluctuations)

CMS PAS HIN-14-006

$v_{2}{2} > v_{2}{4} \approx v_{2}{6} \approx v_{2}{8} \approx v_{2}{LYZ,\infty}$

(event-by-event fluctuations)

CMS PAS HIN-14-006

Direct evidence of strong collectivity in pPb!

LHCP 2014

Other interpretations:

- Quantum entanglement of gluons: PRD 87 (2013) 094034
- Non-abelian beam jet: arXiv:1405.7825

Other interpretations:

- Quantum entanglement of gluons: PRD 87 (2013) 094034
- Non-abelian beam jet: arXiv:1405.7825

- \succ Is it also collectivity in pp?
- Jet quenching in pp and pA?
- If indeed everything flows, what's the mechanism of thermalization?

Other interpretations:

- Quantum entanglement of gluons: PRD 87 (2013) 094034
- Non-abelian beam jet: arXiv:1405.7825

- \succ Is it also collectivity in pp?
- Jet quenching in pp and pA?
- If indeed everything flows, what's the mechanism of thermalization?

Stay tuned for more excitements!

