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Abstract 
We investigate the decay of the neutral boson at a mass around GeV125  observed in the 

LHC ATLAS and CMS experiments into a pair of on-shell W -bosons in a uniform magnetic field. 

We have determined that the decay of the neutral boson at a mass around GeV125  into an on-shell 
WW -pair in a uniform magnetic field becomes, in principle, possible and the new decay channel 

of this boson in a magnetic field is allowed by the energy and total angular momentum conservation 

laws. The required magnetic field strength for observation of the measurable effect is  G2310~  (or 

in Teslas T1910~ ).  The existence of the other neutral boson with the spin 0J  and with the other 

mass is not either excluded in the mass range below GeVmW 77.1602  . We hope that the 

possibility of the decay of the neutral boson at a mass around GeV125  into a pair of on-shell W -

bosons in a uniform magnetic field will attract the experimental  physicists’ attention in future 

collider experiments.  

 
Keywords: Higgs boson, W -boson in a magnetic field, parity, charge conjugation, neutral boson at 

a mass around GeV125  
 
PACS numbers:14.80.-j, 14.80.Bn, 13.88.+e, 11.30.Er  

 



 2 

1. INTRODUCTION 

Recently a new neutral boson (NB) at a mass around GeV125  [1, 2] with properties 

compatible with the Standard Model Higgs boson [3-8] was discovered in the LHC  ATLAS 

and CMS experiments. This boson is described with  0PCJ  where P  is the parity, C  is 

the charge conjugation, J  is the spin. One of the decay channels of the discovered Higgs-

like boson is *WWH  . One of these W -bosons is on-shell, the other one )( W  is off-

shell. According to the energy conservation law the decay of this NB into the on-shell 
WW -boson pair is impossible because of WH mm 2 , where GeVmW 385.80  [9] is the 

W -boson mass. Therefore, this NB decays into one on-shell W -boson and one off-shell W -

boson. The following natural questions arise. In what condition can the GeV125  Higgs 

boson decay to a pair of on-shell W -bosons? How is realistic and promising the decay of the 

NB at a mass around GeV125  into the two on-shell W -bosons in a magnetic field (MF)? 

Search for the answers to these questions determines the motivation for the presented 

investigation. We investigate the decay of the NB at a mass around GeV125  observed at the 

LHC into a pair of on-shell W -bosons in a MF. The main purpose of this work is to 

determine the condition in what the NB at a mass around GeV125  can decay to a pair of on-

shell W -bosons?  

 

2. BASIC IDEA IN THIS WORK 

The energy spectrum of a W -boson in an external uniform MF is discussed in a 

number of papers or review articles (See: e.g., [10-14]). Here we use the formula  

                                 222 212 Wzz meBsqnpE   ,                                  (1) 

for the energy spectrum of a W -boson in an external uniform MF [10, 11],   where BB


  

is the strength of a MF whose intensity vector B


 is directed along the Oz -axis, zp  and zs  

are the third component of the momentum and the third component of the spin of a W -

boson, respectively, ...,2,1,0n  enumerates the Landau energy levels of a W -boson, 

1q  ( 1q ) is the sign of the electric charge of a W   W -boson. The formula (1) is 

written in the 1 c  system of units. 

A W -boson has three polarization states: 1,1)1,1(  zssW 
 , 

0,1)0,1(  zssW 
 , 1,1)1,1(  zssW 

 , where s  is the spin of a W -
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boson. Hereafter we will consider the case 0,0  zpn  . Let us consider the case 

1zsq   in the formula (1). The case  0,0  zpn   and  1zsq   corresponds to the 

ground Landau level of the   WW -boson. When the   WW -boson spin is oriented along 

(against) the MF direction, i.e. when 1zs  ( 1zs ), the W -boson energy satisfies the 

inequality  

                                    WW meBmE  2                                                 (2) 

 

for an arbitrary B  taken from the range WBB 00   where emB WW
2

0  .  

 The NB at a mass around GeV125  observed at the LHC is produced in the pp -

collisions at TeVs 7  and TeVs 8  via the one of the following main reaction 

channels: the gluon-gluon fusion channel, the vector boson fusion channel, the Higgs-

strahlung channel and the channel of the associated production with a tt  quark-antiquark 

pair [15-19]. The main decay channels of the NB at a mass around GeV125  are Y , 

lZZY 4*  , llWWY  * ,  Y , bbY  . 

         So, one of the main decay modes of the NB at a mass around GeV125  observed at the 

ATLAS and CMS experiments is the llWWH  *  channel [20]. As we have already 

noted one of these W -bosons is on-shell, the other one )( W  is off-shell. According to the 

energy conservation law the decay of this NB into the on-shell WW -boson pair is 

impossible. Therefore, this NB decays into one on-shell W -boson and one off-shell W -

boson. However, if we place this NB in a uniform MF, the MF will affect on the W - and 
W -bosons that are the products of the decay  WWY . If we consider the NB at a mass 

around GeV125  in the rest frame and take into account the relation WW meBmE  2  for 

the  W  ( W )-boson with 1zs  ( 1zs ) in the energy conservation law 

  WWHH EEEm , we can see that in a sufficiently strong MF with the strength HB  the 

equality HWH eBmm  22  is satisfied and the decay of the NB with the mass around 

GeV125  into the two on-shell W -bosons becomes, in principle, energetically possible. So, 

as a result of the decay reaction  WWH  in a MF we have the final diboson system H   

that consists of the on-shell W - and W -bosons situating in a MF. 
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3. POLARIZATION STATES OF WW -SYSTEM  

We denote an arbitrary polarization state of the system H   as zHH SS  ,  where 

 WWH SS  is the total spin of the system H   and zHS   is the third component of the total 

spin vector  WWH SS


. The quantum states of the system H   can have the spin equal to 0 , 

1, 2 . Using the three possible polarization states of  W -bosons, the addition rule of spins 

and the Clebsch-Gordan coefficients [9, 21] we obtain nine polarization states zHH SS  ,  of 

the system H  : 2,2  , 1,2  , 0,2 , 1,2  , 2,2  , 1,1  , 0,1 , 1,1  , 0,0 . The total 

angular momentum vector J


 of the WW -system is determined with the total spin vector 

WWS


 of the WW -system  and the orbital angular momentum vector WWL


 of the relative 

motion performed by the W - and W -bosons on the plane perpendicular to the MF 

intensity vector which is oriented along the Oz -axis. It should be noted that in case of the 

longitudinal polarization of the spin of the W -boson we have 0zs  and from the formula 

(1) we derive WW meBmE  2  for an arbitrary B  taken from the range WBB 00  . In 

this case we obtain the relation WW meBmm 22 2   for the mass of the decaying NB. The 

last relation contradicts to the condition WH mGeVm 2125  . So, in the mass range 

Wmm 20   there is no sense to investigate the case of the longitudinal polarization of the 

spin of the on-shell W  ( W )-boson in a MF. In case of the transverse polarization the spin 

vector WWS


 in a MF is strictly oriented along or against the MF (Oz -axis) direction. So, in 

case of the transverse polarization the relations constJJ 


 and constJ z   can be written 

for the total angular momentum J  and its projection zJ . Therefore here we investigate the 

case of the transverse polarization of the spins of the on-shell W -bosons in a MF. In this 

case the polarization states 1,1)1,1(  


zssW  and  1,1)1,1(  


zssW  

only contributes to the transverse polarization of the system H   that has five different 

polarization states: 

 1,1;1,12,2  ,   1,1;1,11,1;1,1610,2  , 1,1;1,12,2  , 

                  1,1;1,11,1;1,1210,1  ,  1,1;1,11,1;1,1
3

10,0  . 

The states 0,2 , 0,1  and 0,0  are formed from )1,1(  


zssW  and 
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)1,1(  


zssW  or from )1,1(  


zssW  and )1,1(  


zssW  as a result of the 

transition reactions )0,2(   zHH SSHH , 

)0,1(   zHH SSHH , )0,0(   zHH SSHH , respectively. According to the energy 

conservation law the energy of the final WW -system WWE  is to be in the range 

WWW mE 20    and  WWE  can not be more than Wm2 .  The polarization states 

1,1)1,1(  


zssW  and  1,1)1,1(  


zssW  only satisfy the condition 

WWW mE 20   .  Therefore we assume that the W -bosons are produced on the ground 

Landau level and we consider the contributions from the polarization states 

1,1)1,1(  


zssW  and 1,1)1,1(  


zssW . 

The energy conservation law is as HWH eBmmm  22  for the transition reactions 

)0,2(   zHH SSHH , )0,1(   zHH SSHH , )0,0(   zHH SSHH  when 

)1,1(  


zssW  and )1,1(  


zssW  are produced on the ground Landau level. Since  

we consider a NB in the rest frame, the mass of the decaying NB can not be zero: 0m . 

Taking into account the condition 0m  we obtain from the formula  HWH eBmmm  22  

that  WH BB 0  and WH BB 0 . So, the mass of the NB at a mass around GeV125  satisfies 

the condition WH mm 20   ( GeVmH 77.1600  ) for an arbitrary B  taken from the range 

WH BB 00  .  

 

4. QUANTUM CHARACTERISTICS OF WW -PAIR  AND SPIN OF GeV125  

BOSON 

Introducing the intrinsic parity   WW PP  for the   WW -boson, the orbital quantum 

number WWL  and the total spin WWS  for the WW -system we can determine the charge 

conjugation WWC , the parity WWP  and the total angular momentum J  for the WW -

system by the following formulas, respectively: 

                                             



 WWWW

SL

WWC )1( ,                                            (3) 

                            



  WWWW

L

WW

L

WW PPP )1()1( ,                               (4)           

                          WWWWWWWWWWWW SLSLSLJ ,...,1, .               (5) 
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We take into account that the NB at a mass around GeV125  also decays into the two 

photons. Therefore its spin J  can not be 1 according to the Landau-Yang theorem [22, 23] 

and the charge conjugation C  of this NB is 1 HCC . The decay  WWH  is a weak 

process and C  is not conserved in this process. It means that if the charge conjugation of the 

initial neutral H -boson is 1HC  before the  reaction  WWH , the charge conjugation 

WWC  might be 1  or 1  after the reaction, or it might also go to a state that is not a WWC  

eigenstate. Here we assume that WWC   is either 1  or 1  after the reaction. We also 

assume that WWP  is either 1  or 1  after the reaction. The following combinations of 

WWC  and  WWP  for the WW -system are possible: 

case A:                                  1,1   WWWW PC ,                                      (6) 

case B:                                  1,1   WWWW PC ,                                      (7) 

case C:                                  1,1   WWWW PC ,                                      (8) 

case D:                                  1,1   WWWW PC .                                      (9) 

Case A: If 1WWS , the condition (6) of the case A is not satisfied. When  0WWS  and 

2WWS , the minimal value for WWL  is 0WWL . In this case we obtain 0J and 2J  

for the spin of the NB. So, if 1,1   WWWW PC , the NB with the spins 0J can exist 

in the mass range WH mm 20  . The particle with the spin 0J in the mass range 

WH mm 20   corresponds to the Higgs boson at a mass around GeV126  discovered in 

2012 at the LHC [1, 2].  

Case B: If 0WWS  and 2WWS , the condition (7) of the case B is not satisfied. When  

1WWS , the minimal value for WWL  is 1WWL . In this case we obtain 0J and 2J  

for the spin of the decaying NB. It means that if 1,1   WWWW PC , the NB with the 

spins 0J can exist in the mass range WH mm 20  .  

Case C: If 0WWS  and 2WWS , the condition (8) of the case C is not satisfied. When  

1WWS , the minimal value for WWL  is 2WWL  (here 0WWL  is not allowed 

according to the Landau-Yang theorem). In this case we obtain 2J  and 3J  for the spin 

of the decaying NB. It means that if 1,1   WWWW PC , the NB with the spin 0J  

can not exist in the mass range WH mm 20  .  
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Case D: If 1WWS , the condition (9) of the case D is not satisfied. When 0WWS , the 

corresponding minimal value for WWL  is 3WWL  (here 1WWL  is not allowed 

according to the Landau-Yang theorem) and we obtain 3J  for the spin of the decaying 

NB. When 2WWS , the minimal value for WWL  is 1WWL . In this case we obtain 2J  

and 3J  for the spins of the decaying NB. So, if 1,1   WWWW PC , the NB with the 

spin 0J  can not exist in the mass range WH mm 20  .  

 

5. DISCUSSION OF THE RESULTS 

We have obtained that only in the cases A and B the NB at a mass around GeV125  

with the spin 0J  can exist in the mass range WH mm 20   and it can decay into the on-

shell )1,1(  


zssW - and )1,1(  


zssW -bosons in a MF:  

case A:   if 1WWC and 1WWP , 2,0J  )0;2,0(   WWWW LS ,          (10) 

case B:   if 1WWC  and 1WWP , 2,0J  )1;1(   WWWW LS ,             (11) 

We have obtained 2,0J  for the spin of the NB at a mass around GeV125  if 

1WWC . One NB with the spin 0J  has already been observed in the mass range  

WH mm 20    by the ATLAS and CMS Collaborations [1, 2]. However, the existence of 

the other NB with the spin 0J  and with the other mass is not excluded in the mass range  

WH mm 20  . The analysis of the above considered cases A, B, C and D show that the 

existence of the NB at a mass around GeV125  with the spin 0J  is allowed in the cases A 

and B. When WW -pair are produced on the ground Landau level, the orbital quantum 

number WWL  should be minimal. WWL  is minimal only in the case A. So, the case A is 

more suitable for the particle with the spin 0J . The existence of the particle with the spin 

2J  would indicate that the world we live has additional dimensions besides known four 

ones [24, 25]. 

The MF strength required for the decay of the NB at a mass around GeV125  into the 

on-shell )1,1(  


zssW - and )1,1(  


zssW -bosons is calculated by the formula 

                                         

                                           





















2

0 2
1

W

H
WH m

mBB .                                           (12)   
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Let us perform the simple numerical estimations for the strength of the MF required for the 

decay of the NB at a mass around GeV125  into the on-shell )1,1(  


zssW - and 

)1,1(  


zssW -bosons in a MF. When GeVm 125 , the required MF strength is  

G2310~  (or in Teslas it is T1910~ ). The strongest (pulsed) MF ever obtained in a laboratory 

is MG28  (or T3108.2  ) [26] that is much less than G2210~  (or T1810~ ). The maximum 

strength of the produced strong MF in noncentral heavy-ion collisions in the direction 

perpendicular to the reaction plane is estimated to be )10(~10~ 1317 TG  at the RHIC and 

)10(~10~ 1418 TG  at the LHC [27-33]. In lead-lead collisions at the LHC, the strength of the 

generated MF may reach )10(~10~ 1620 TG  [28, 29]. We hope that in the future collider 

experiments, when the strength of the produced strong MF reaches the magnitude 

G232210~  , the decay of the the NB at a mass around GeV125   into the on shell W  -and 
W -bosons can be observed experimentally.  

 

6. CONCLUSIONS 

We have investigated the decay of the NB at a mass around GeV125  with properties 

compatible with the Standard Model Higgs boson that was discovered in the LHC ATLAS 

and CMS experiments into a pair of on-shell W -bosons in a uniform MF. We have 

determined that the decay of the NB at a mass around GeV125  into an on-shell WW -pair 

in a uniform MF becomes, in principle, possible and the new decay channel of this boson in 

a MF is allowed by the energy and total angular momentum conservation laws. The required 

MF strength for observation of the measurable effect is  G2310~  (or in Teslas T1910~ ).  

The existence of the other NB with the spin 0J  and with the other mass is not either 

excluded in the mass range  below GeVmW 77.1602  . We hope that the possibility of the 

decay of the NB at a mass around GeV125  into a pair of on-shell W -bosons in a uniform 

MF will attract the experimental  physicists’ attention in future collider experiments.  
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