

COMBINATION OF RESULTS ON THE HIGGS BOSON & MEASUREMENT OF ITS PROPERTIES AT CMS

LHC Physics 2014, New York

Predrag Milenović (UFL) on behalf of the CMS collaboration

Higgs signatures explored at CMS

- CMS explored a large set of accessible signatures
 - Strong evidence in bosonic & fermionic channels!
 - Details on individual bosonic and fermionic decays in talks by X. Janssen & J. Konigsberg (Higgs 1) Higgs overview talk by M. Klute (SM Higgs plenary)

Signal significance

Decay	ZZ	ww	YY	тт	bb
Expected [σ]	6.7	5.8	4.2	3.7	2.3
Observed [σ]	6.8	4.3	3.2	3.2	2.1

- Significant set of explored signatures used for combined measurements
 - Results in this talk: CMS-HIG-13-005, CMS-HIG-13-002, CMS-HIG-13-023, HIG-13-030

Channels explored by CMS, subset used for combined results

	bb	ττ	ww	ZZ	YY	Ζγ	μμ	inv.
inclusive (ggH)		~	~	~	~	~	V	
VBF tag	V	~	~	V	~	V	V	V
VH tag	~	V	~	~	V			V
ttH tag	~	V	V	V	V			

combined properties measurement: mass, spin-parity

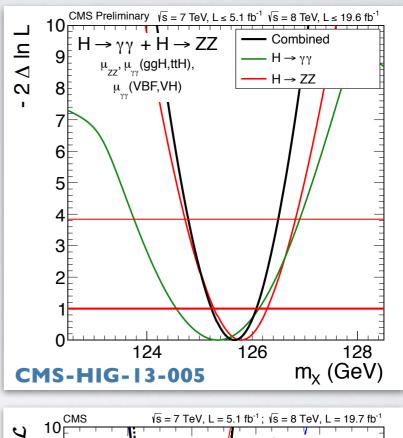
I used for combination results: deviations of couplings (CMS-HIG-13-005)

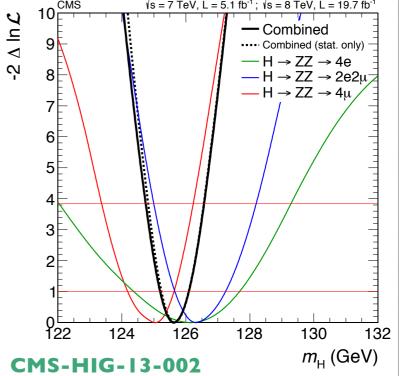
Mass of the new boson

Mass measurement using high resolution channels:
 H→ZZ→4I

 Very good control of the leptons scale and resolution, exploits per-event mass uncertainties

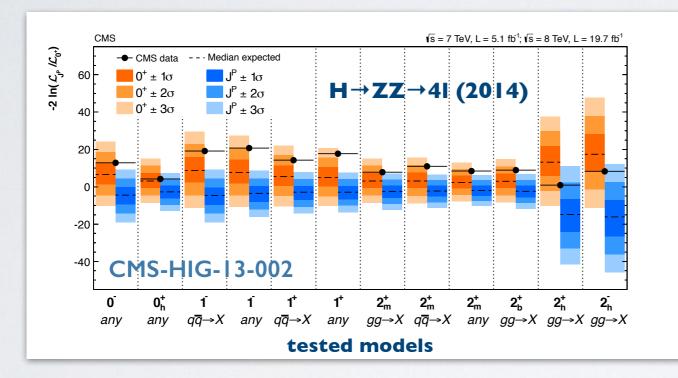
H→γγ


- Good resolution, systematics on the extrapolation from the $Z \rightarrow ee$ to $H \rightarrow \gamma \gamma$
- Combined mass measurement (2013)
 - individual signal strengths independently profiled

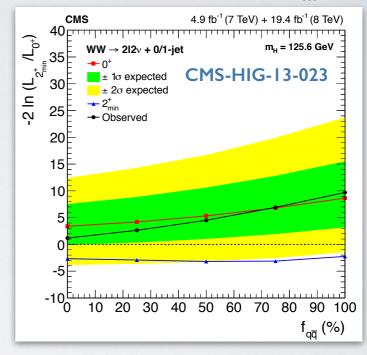

M_H = 125.7 ± 0.3_{STAT} ± 0.3_{SYST} GeV

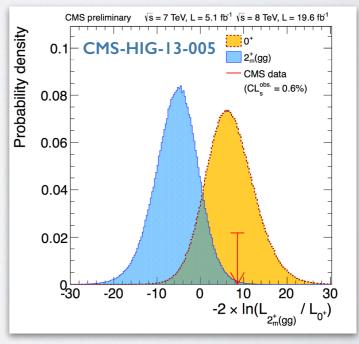
- Latest measurement in $H \rightarrow ZZ \rightarrow 4I$ (2014)
 - public results: CMS-HIG-13-002

► m_H = 125.6 ± 0.4_{STAT} ± 0.2_{SYST} GeV


See talk by X. Janssen for details on individual channels

Alternative J^P hypotheses


- Tested the compatibility of the new boson with alternative J^P hypotheses
 - exploit shapes of kinematic observables (angles, inv. masses) $H \rightarrow ZZ \rightarrow 4I, H \rightarrow WW \rightarrow 2I2\nu, H \rightarrow \gamma\gamma$
 - HWW tested spin-2 hypotheses (2_m⁺) for diff. prod. mechanisms
 - Many hypotheses excluded using the HZZ channel @99%C.L.


- Combined test for hypothesis $gg \rightarrow 2_m^+$ (HWW & HZZ, 2013)
 - Hypothesis gg $\rightarrow 2_m^+$ is excluded at 99% CL

J^P = 0⁺ strongly favoured by measurements

HWW exclusion of 2_m⁺

Combined test-statistics: $gg \rightarrow 2_m^+$

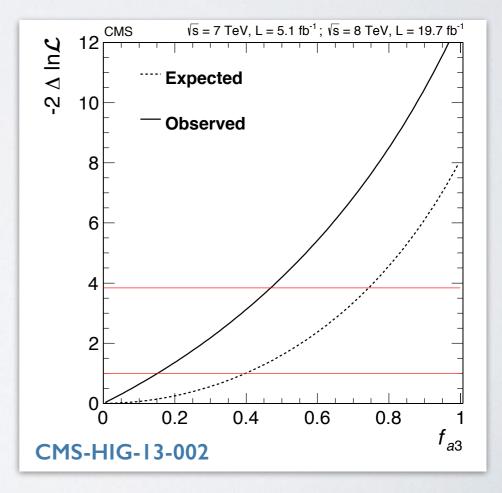
Predrag Milenovic, University of Florida

٠

CP-odd contribution in H \rightarrow ZZ \rightarrow 4I decays

• Probe for fractional presence of the CP-odd contribution (0⁻) in the scalar decays:

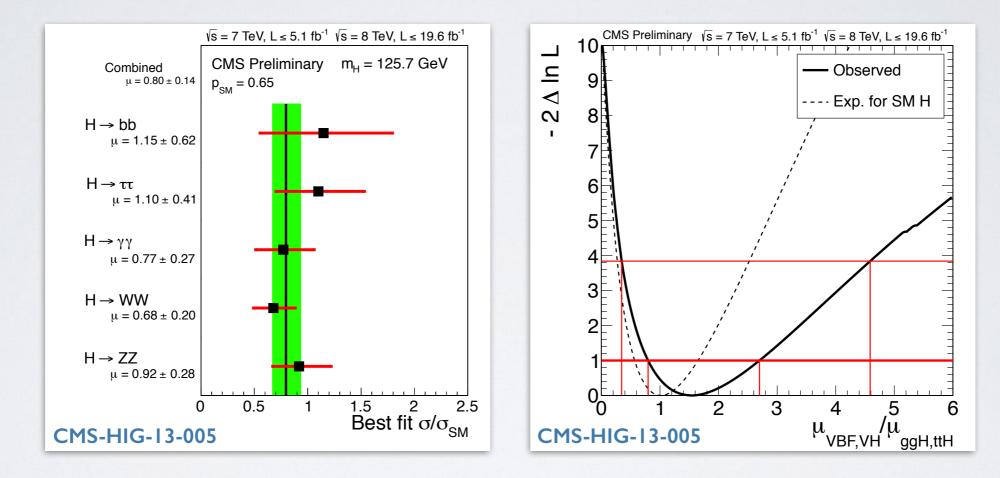
$$A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3$$


 A_2 contribution assumed to be 0

- 0_m^+ / 0^- decays governed by the A_1 / A_3 amplitudes (total x-sections σ_{0m+} / σ_{0-}),
- Explore it using $H \rightarrow ZZ \rightarrow 4I$ decay channel
- Total cross-section insensitive to interference between the CP-odd and CP-even components
- Use shapes of kinematic observables for SM Higgs (0_m⁺) and 0⁻ states and fit the data for their relative presence (the total event yield is taken from data)

$$f_{a3} = \frac{\sigma_{0^-}}{\sigma_{0^+_{\rm m}} + \sigma_{0^-}}$$
 defined for 2e2µ final state

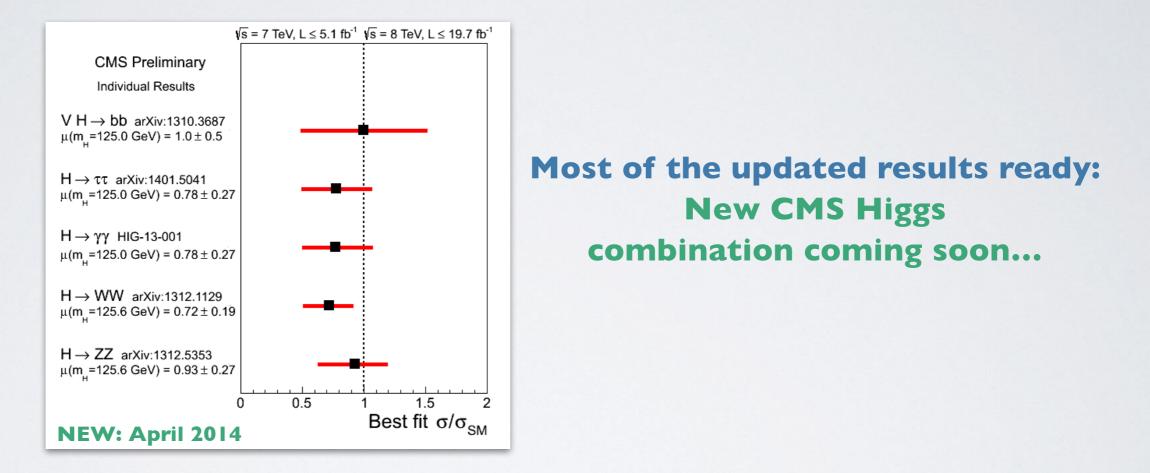
Upper limit on the fractional x-section f_{a3} in data:


fa3 < 0.51 (@95%CL)

Search for deviations - Production modes

- Signal strength (μ) results explored for various decay and production modes
 - Results from individual modes compatible to SM Higgs predictions!

probe the couplings by expanding around that reference point!


• Ratio of μ s in production modes with fermionic and bosonic couplings: $\mu_{VBF,VH}/\mu_{ggH,ttH}$

• Best-fit $\mu_{VBF,VH}/\mu_{ggH,ttH} = 1.538^{+1.161}-0.743$ (3.2 σ against a zero ratio)

evidence for vector-boson induced production!

Search for deviations - Production modes

- Signal strength (μ) results explored for various decay and production modes
 - Results from individual modes compatible to SM Higgs predictions!
 - probe the couplings by expanding around that reference point!

- Ratio of μ s in production modes with fermionic and bosonic couplings: $\mu_{VBF,VH}/\mu_{ggH,ttH}$
 - Best-fit $\mu_{VBF,VH}/\mu_{ggH,ttH} = 1.538^{+1.161}-0.743}$ (3.2 σ against a zero ratio)

evidence for vector-boson induced production!

Search for deviations - Couplings

Search for deviations from SM in the scalar couplings (LHC XS WG benchmarks)

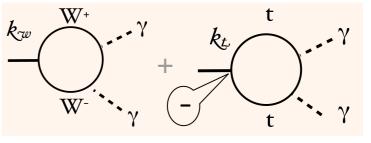
• Assumptions:

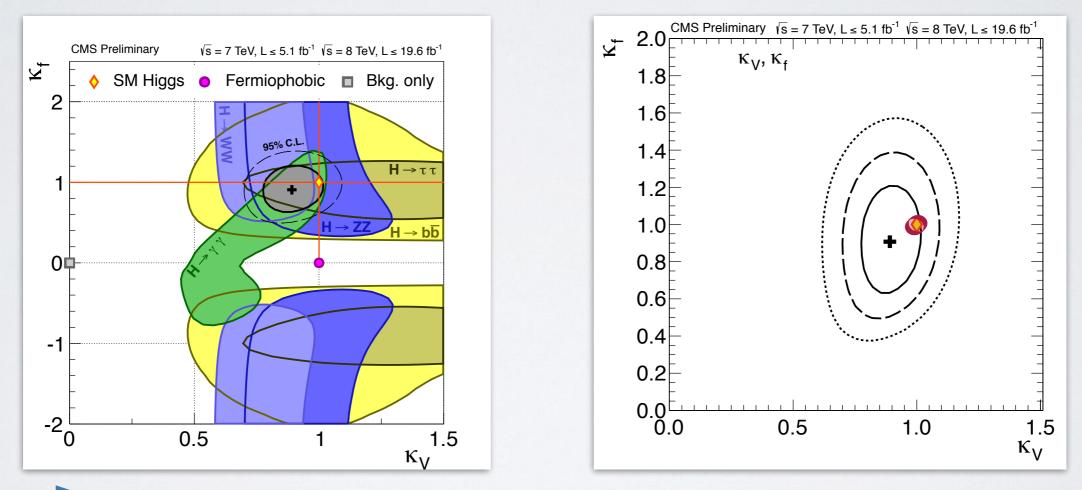
- Observed signals originate from a single narrow resonance
- Parametrise deviations only with couplings strengths modifiers $\{\kappa_x\}$

• Procedure:

• Scale SM x-sections & SM partial widths as function of parameters $\{\kappa_x\}$.

$$(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

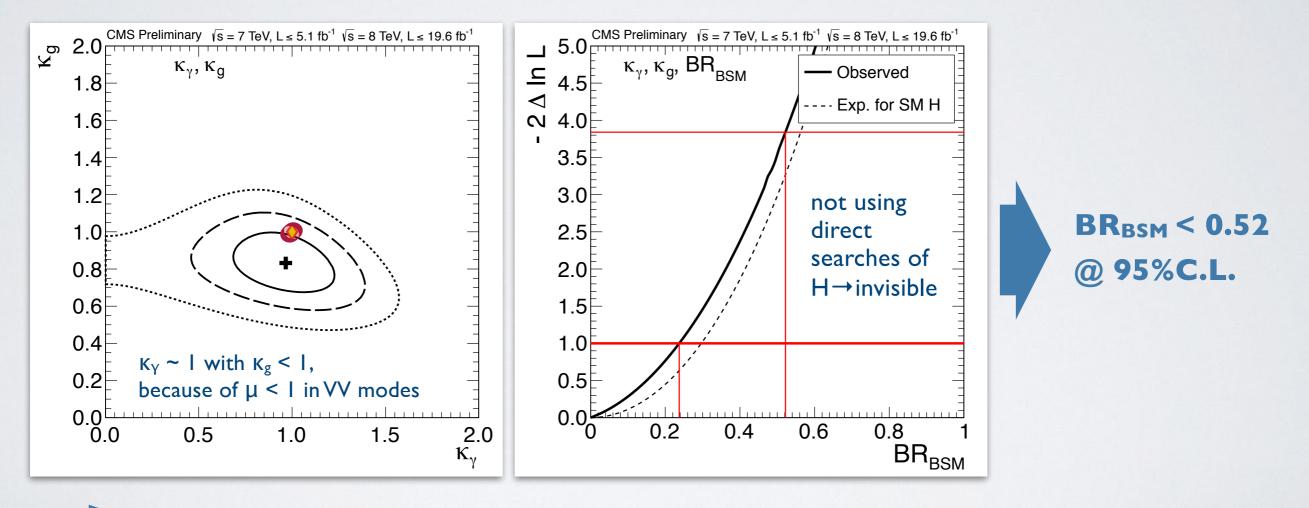

In cases of loop processes, κ_x can be expressed as a function of more fundamental κ_v


- If BSM decays are allowed scale down all SM decays uniformly
- Scenarios:
 - Fermion vs. vector boson couplings and asymmetries in couplings
 - Searches for new physics in loops and decays
 - Simultaneous fit of coupling modifiers

 $(\sigma \cdot BR)(i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$

Asymmetries in couplings

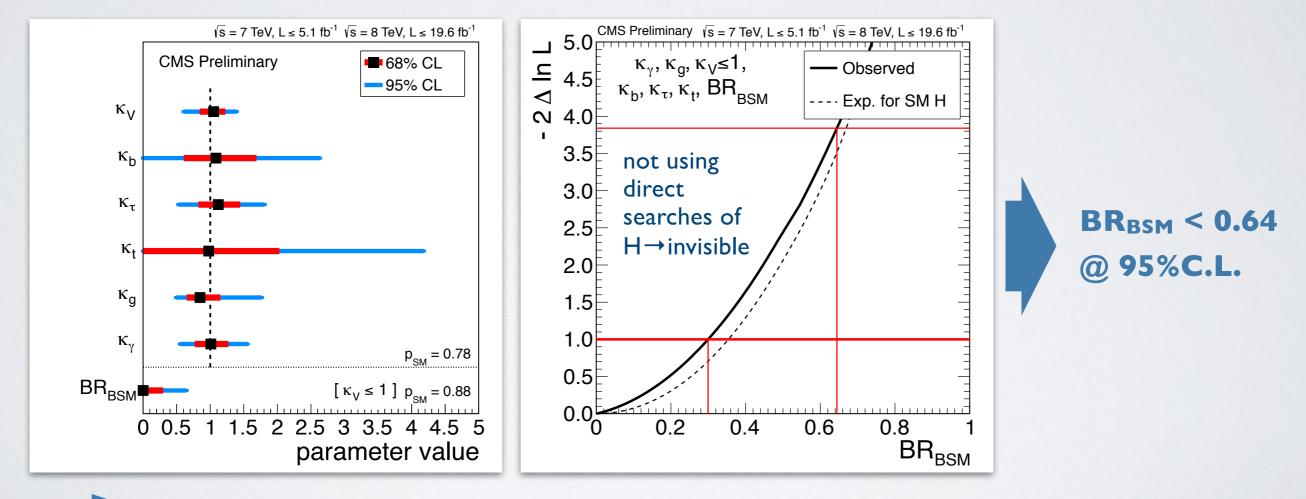
- Test universality between couplings/modifiers to vector bosons and fermions $(\kappa_Z = \kappa_W = \kappa_V \text{ and } \kappa_t = \kappa_b = \kappa_\tau = \kappa_f)$
- In $H \rightarrow \gamma \gamma$ loop we are sensitive to sign of $\kappa_f \kappa_V$ through interference (choose $\kappa_V > 0$)



compatible with SM ($\kappa_f = \kappa_V$), clear preference for $\kappa_f > 0$

• Also tested (HIG-13-005): Custodial symmetry, lepton-quark and up-down universality

New physics in loops and decays


- Probe for new physics in **loops** allow general $\kappa_g \& \kappa_Y$ modifiers of ggH and HYY
 - Assume no additional new physics in Higgs width, all other SM tree-level couplings
- Probe new physics in loops & decays allow $\kappa_g \& \kappa_Y$ modifiers with BR_{BSM} > 0
 - Constrain total width from observed $\sigma \cdot BR$'s assuming SM tree-level couplings

- Effective couplings to gluons and photons in agreement with SM

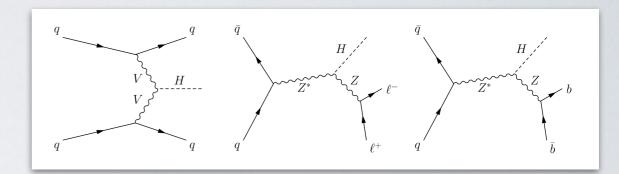
Simultaneous fit of coupling modifiers


- Probe for 6 couplings simultaneously: κ_V ; κ_t , κ_b , κ_τ ; κ_g , κ_Y
 - assume custodial and up-down fermion symmetry: $\kappa_W = \kappa_Z = \kappa_V \& \kappa_u = \kappa_c = \kappa_t \& \kappa_d = \kappa_s = \kappa_b \& \kappa_e = \kappa_\mu = \kappa_\tau$
 - No BSM decays: BR_{BSM} = 0
- In addition allow $BR_{BSM} > 0$, by adding requirement $\kappa_V \leq I$ (common in EWSB)

All effective couplings in good agreement with SM

Searches for H→invisible

- Performed search using the VBF and associated ZH production modes
- Sensitive to non-SM invisible decays of the observed Higgs boson,



- also sensitive to additional bosons with similar production and large invisible BR
- Combined all search VBF/ZH channels
 Upper limit on the invisible BR, m_H=125GeV
 BRinvisible < 0.58 @ 95% C.L.
- Results also interpreted in terms of a Higgs-portal model of DM interactions.
 - DM interaction with nucleons through Higgs exchange diagram

- CMS-HIG-13-030 B(H→ inv)/σ_{SM} CMS 95% CL limits Combination of VBF and Observed limit ZH, $H \rightarrow invisible$ Expected limit $\sqrt{s} = 8 \text{ TeV} (\text{VBF} + \text{ZH})$ Expected limit (1σ) $L = 18.9 \cdot 19.7 \text{ fb}^{-1}$ Expected limit (2o) хb √s = 7 TeV (Z(II)H only) $L = 4.9 \text{ fb}^{-1}$ 0.8 0.6 0.4 0.2 115 120 125 130 135 140 m_н [GeV]
- reported limits for DM candidate as scalar, vector, or Majorana fermion (CMS-HIG-13-030)

Searches for H→invisible

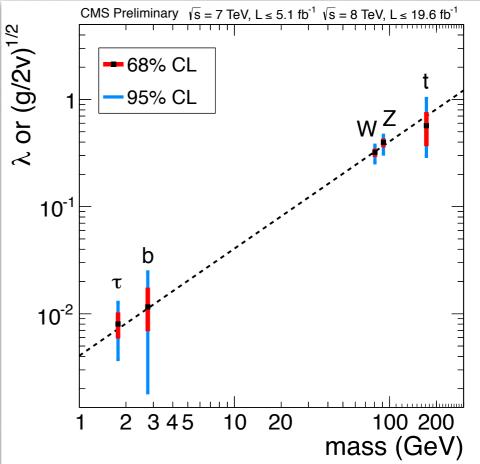
- Performed search using the VBF and associated ZH production modes
- Sensitive to non-SM invisible decays of the observed Higgs boson,

- also sensitive to additional bosons with similar production and large invisible BR
- Combined all search VBF/ZH channels

Upper limit on the invisible BR, m_H=125GeV BR_{invisible} < 0.58 @ 95% C.L.

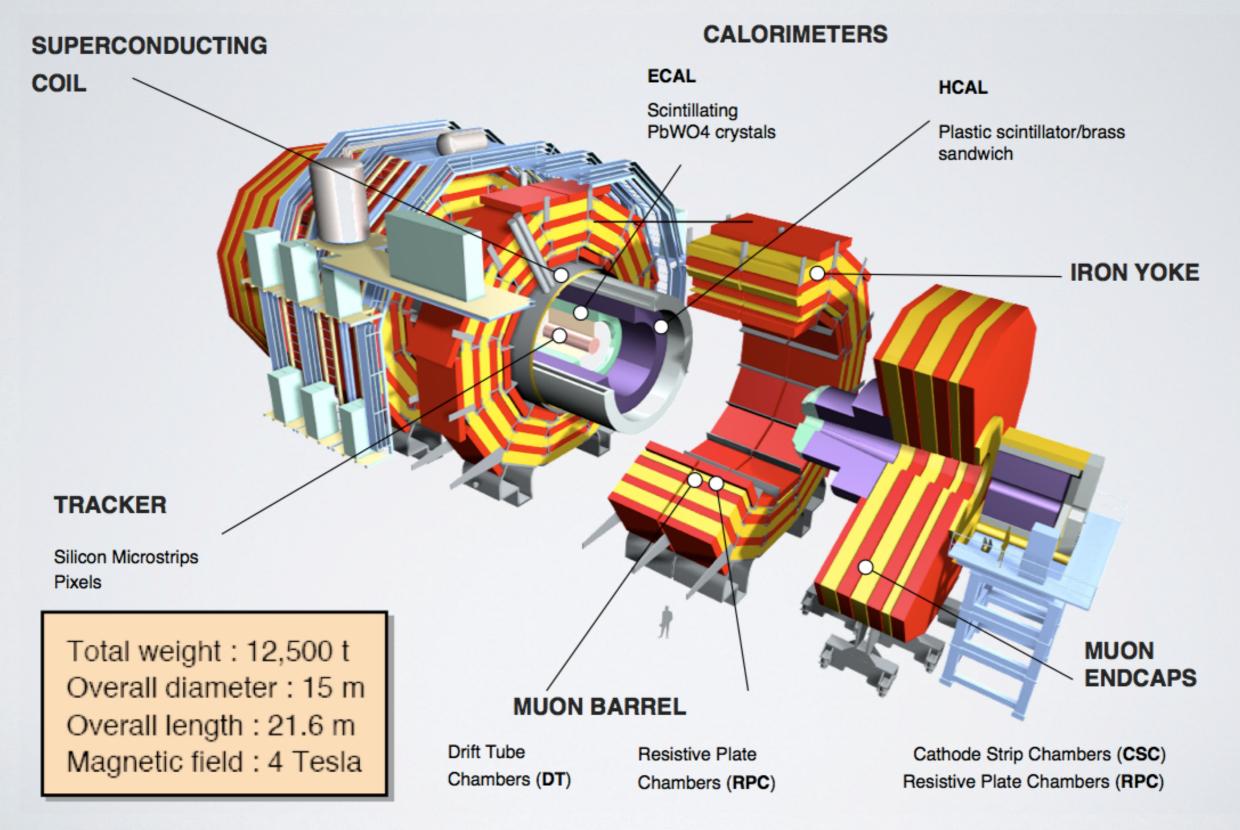
- Results also interpreted in terms of a Higgs-portal model of DM interactions.
 - DM interaction with nucleons through Higgs exchange diagram

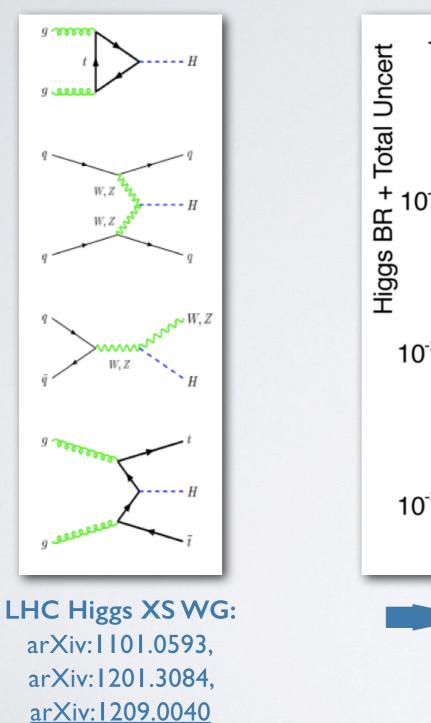
- 10 DM-nucleon cross section $\sigma^{S\prime}_{\chi^{-N}}$ [pb] Combination of VBF and CMS 10⁻² ZH, $H \rightarrow invisible$ √s = 8.0 TeV, L = 18.9-19.7 fb⁻¹ (VBF+ZH) 10⁻³ $\sqrt{s} = 7.0 \text{ TeV}, L = 4.9 \text{ fb}^{-1} (ZH)$ B(H→ inv) < 0.51 @ 90% CL m_H = 125 GeV 10⁻⁴ 10⁻⁵ 10⁻⁶ 10^{-7} 10^{-8} 10⁻⁹ CRESST 20 **10**⁻¹⁰ XENON100(2012) XENON10(2011) 10⁻¹ oGeNT(2013)/90%CI CoGeNT(2013)/99%CL CDMS(2013)/95%CI 10⁻¹ COUPP(2012) 10 10^{2} 10^{3} 10 $\check{D}M$ Mass M_{γ} [GeV] CMS-HIG-13-030
- reported limits for DM candidate as scalar, vector, or Majorana fermion (CMS-HIG-I3-030)


Summary

- CMS has analysed a comprehensive set of production and decay channels
 - Measured properties combining information from different channels:

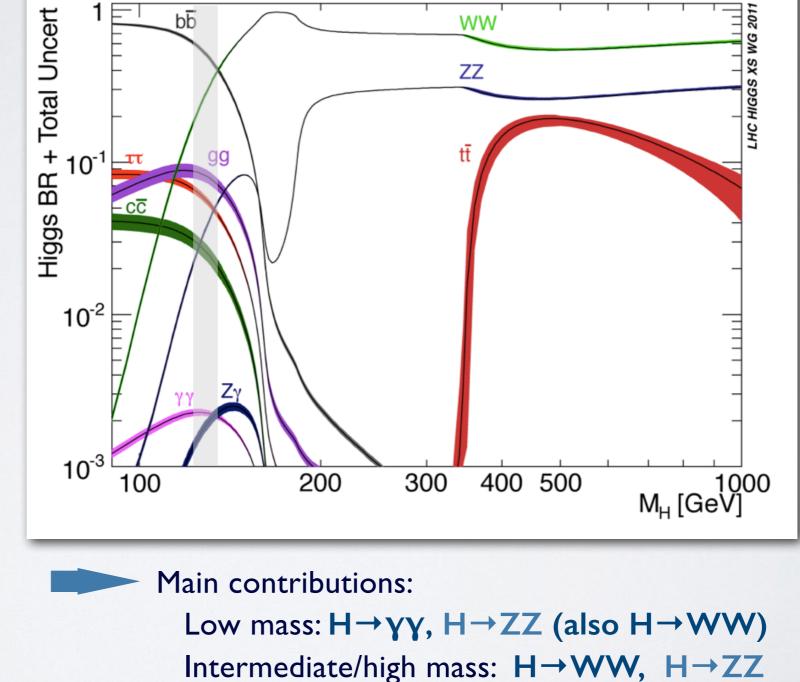
mass: $m_H = 125.7 \pm 0.3_{STAT} \pm 0.3_{SYST}$ GeV spin-parity: compatible with J^P = 0⁺ total width: $\Gamma < 22$ MeV @ 95%C.L.


- A wide range of Higgs coupling tests is performed
 - No significant deviation from SM predictions observed within the uncertainties
- Combined results for H→invisible
- Next combination of CMS results expected soon
- All measurements show: the new boson is compatible with the SM Higgs boson!



Backup slides

Compact Muon Solenoid



Higgs production and decay modes

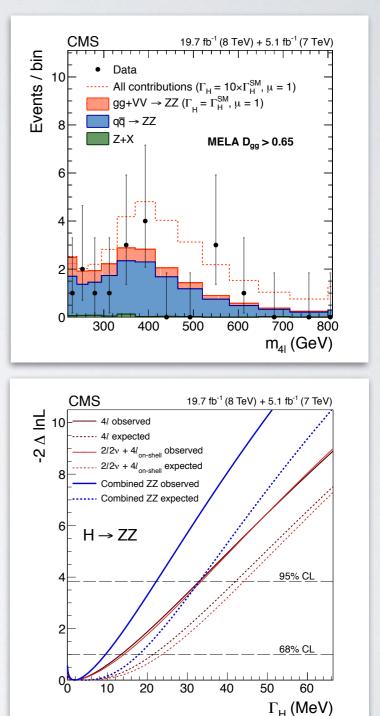
Production

Decay modes and branching ratios

common inputs to experiments

Constraint on Higgs boson width

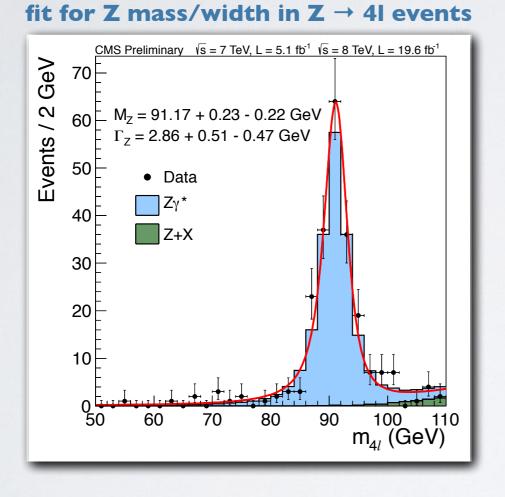
- Experimental resolution strongly limits direct width (Γ_H) measurement to ~IGeV
 - SM Higgs decay width is 4.15 MeV at m_H = 125.6 GeV
- Important theoretical advances [*] : made possible to constrain the Higgs boson width using its off-shell production & decay away from the peak.


$$\sigma_{gg \to ZZ}^{\text{on-peak}} \propto rac{g_{ggH}^2 g_{HZZ}^2}{\Gamma} \quad \sigma_{gg \to ZZ}^{\text{off-peak}} \propto g_{ggH}^2 g_{HZZ}^2$$

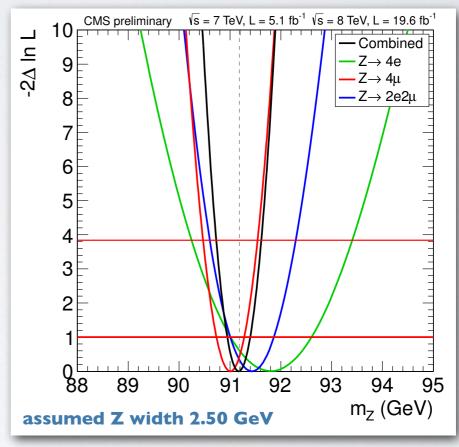
experimental constraints on the width Γ_H with mild model-dependence

• Channels $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow ZZ \rightarrow 2I2v$

m_{ZZ} distribution can be used alone, but kinematic observables improve sensitivity (sig-bkg interference significant, accounted properly)



[*] JHEP 08 (2012), Phys Rev D 88 (2013) 054024,


see also talk by X. Janssen for details

Mass measurement validation with $Z \rightarrow 4I$

- Perform the mass measurement of the near-by $Z \rightarrow 4I$ resonance
 - identical procedure as for the new boson mass measurement (without δm_{41} and KD),
 - relaxed phase space due to the limited statistics $(m_{Z2} > 4 \text{ GeV})$

likelihood scans for 4e, 4µ, 2e2µ

Compatible with the PDG values within uncertainties.