COMBINATION OF RESULTS ON THE HIGGS BOSON & MEASUREMENT OF ITS PROPERTIES AT CMS

LHC Physics 2014, New York

Predrag Milenović (UFL)
on behalf of the CMS collaboration
Higgs signatures explored at CMS

- CMS explored a large set of accessible signatures
 - Strong evidence in bosonic & fermionic channels!
 - Details on individual bosonic and fermionic decays in talks by X. Janssen & J. Konigsberg (Higgs I)
 Higgs overview talk by M. Klute (SM Higgs plenary)

- Significant set of explored signatures used for combined measurements

<table>
<thead>
<tr>
<th>Channels explored by CMS, subset used for combined results</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusive (ggH)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>VBF tag</td>
</tr>
<tr>
<td>VH tag</td>
</tr>
<tr>
<td>ttH tag</td>
</tr>
</tbody>
</table>

- ✔ : combined properties measurement: mass, spin-parity
- ✔✔ : used for combination results: deviations of couplings (CMS-HIG-13-005)

<table>
<thead>
<tr>
<th>Signal significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay</td>
</tr>
<tr>
<td>Expected [σ]</td>
</tr>
<tr>
<td>Observed [σ]</td>
</tr>
</tbody>
</table>

Note: Expected [σ] and Observed [σ] values for various decays.
Mass of the new boson

• Mass measurement using high resolution channels:
 \(H \rightarrow ZZ \rightarrow 4l \)
 • Very good control of the leptons scale and resolution, exploits per-event mass uncertainties

\(H \rightarrow \gamma\gamma \)
• Good resolution, systematics on the extrapolation from the \(Z \rightarrow ee \) to \(H \rightarrow \gamma\gamma \)

• Combined mass measurement (2013)
 • individual signal strengths independently profiled

\[m_H = 125.7 \pm 0.3_{\text{STAT}} \pm 0.3_{\text{Syst}} \text{ GeV} \]

• Latest measurement in \(H \rightarrow ZZ \rightarrow 4l \) (2014)
 • public results: CMS-HIG-13-002

\[m_H = 125.6 \pm 0.4_{\text{STAT}} \pm 0.2_{\text{Syst}} \text{ GeV} \]

See talk by X. Janssen for details on individual channels
Alternative J^P hypotheses

- Tested the compatibility of the new boson with alternative J^P hypotheses
- exploit shapes of kinematic observables (angles, inv. masses)
 $H \rightarrow ZZ \rightarrow 4l$, $H \rightarrow WW \rightarrow 2l2\nu$, $H \rightarrow \gamma\gamma$
- HWW tested spin-2 hypotheses ($2m^+$) for diff. prod. mechanisms
- Many hypotheses excluded using the HZZ channel @99%C.L.

- Combined test for hypothesis $gg \rightarrow 2m^+$ (HWW & HZZ, 2013)
 - Hypothesis $gg \rightarrow 2m^+$ is excluded at 99% CL

$J^P = 0^+$ strongly favoured by measurements
CP-odd contribution in $H \rightarrow ZZ \rightarrow 4l$ decays

• Probe for fractional presence of the CP-odd contribution (0^-) in the scalar decays:

$$A(X \rightarrow VV) = v^{-1} \varepsilon_1^\ast \varepsilon_2^\ast (a_1 g_{\mu\nu} m_H^2 + a_2 q_{\mu\nu} + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta) = A_1 + A_2 + A_3$$

A_2 contribution assumed to be 0

• $0^+_m / 0^-$ decays governed by the A_1 / A_3 amplitudes (total x-sections $\sigma_{0^+_m} / \sigma_{0^-}$),

• Explore it using $H \rightarrow ZZ \rightarrow 4l$ decay channel

• Total cross-section insensitive to interference between the CP-odd and CP-even components

• Use shapes of kinematic observables for SM Higgs (0^+_m) and 0^- states and fit the data for their relative presence (the total event yield is taken from data)

$$f_{a3} = \frac{\sigma_{0^-}}{\sigma_{0^+_m} + \sigma_{0^-}}$$

defined for $2e2\mu$ final state

Upper limit on the fractional x-section f_{a3} in data:

$$f_{a3} < 0.51 \text{ (@95%CL)}$$
Search for deviations - Production modes

- Signal strength (μ) results explored for various decay and production modes
 - Results from individual modes compatible to SM Higgs predictions!
 - probe the couplings by expanding around that reference point!

- Ratio of μs in production modes with fermionic and bosonic couplings: $\mu_{VBF,VH}/\mu_{ggH,ttH}$
 - Best-fit $\mu_{VBF,VH}/\mu_{ggH,ttH} = 1.538^{+1.16}_{-0.743}$ (3.2σ against a zero ratio)

 "evidence for vector-boson induced production!"
Search for deviations - Production modes

• Signal strength (μ) results explored for various decay and production modes
 • Results from individual modes compatible to SM Higgs predictions!
 probe the couplings by expanding around that reference point!

• Ratio of μs in production modes with fermionic and bosonic couplings: $\mu_{VBF,VH}/\mu_{ggH,ttH}$
 • Best-fit $\mu_{VBF,VH}/\mu_{ggH,ttH} = 1.538^{+1.161}_{-0.743}$ (3.2σ against a zero ratio)
 evidence for vector-boson induced production!

Most of the updated results ready: New CMS Higgs combination coming soon...

NEW: April 2014
Search for deviations - Couplings

- **Search for deviations from SM in the scalar couplings (LHC XS WG benchmarks)**

- **Assumptions:**
 - Observed signals originate from a single narrow resonance
 - Parametrise deviations only with couplings strengths modifiers \{κ_x\}

- **Procedure:**
 - Scale SM x-sections & SM partial widths as function of parameters \{κ_x\}.

\[
(\sigma \cdot BR)(i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}
\]

- In cases of loop processes, κ_x can be expressed as a function of more fundamental κ_y
 - If BSM decays are allowed - scale down all SM decays uniformly

- **Scenarios:**
 - Fermion vs. vector boson couplings and asymmetries in couplings
 - Searches for new physics in loops and decays
 - Simultaneous fit of coupling modifiers

Predrag Milenovic, University of Florida
Asymmetries in couplings

• Test universality between couplings/modifiers to vector bosons and fermions
 \((k_Z = k_W = k_V \text{ and } k_t = k_b = k_\tau = k_f)\)

• In \(H \rightarrow \gamma\gamma\) loop we are sensitive to sign of \(k_f k_V\) through interference (choose \(k_V > 0\))

\[
\begin{align*}
 k_Z &= k_W = k_V \\
 k_t &= k_b = k_\tau = k_f
\end{align*}
\]

compatible with SM (\(k_f = k_V\)), clear preference for \(k_f > 0\)

• Also tested (HIG-13-005): Custodial symmetry, lepton-quark and up-down universality

Predrag Milenovic, University of Florida
New physics in loops and decays

- Probe for new physics in loops - allow general κ_g & κ_γ modifiers of ggH and $H\gamma\gamma$
 - Assume no additional new physics in Higgs width, all other SM tree-level couplings
- Probe new physics in loops & decays - allow κ_g & κ_γ modifiers with $BR_{BSM} > 0$
 - Constrain total width from observed $\sigma \cdot BR$'s assuming SM tree-level couplings

Effective couplings to gluons and photons in agreement with SM

$BR_{BSM} < 0.52$ @ 95%C.L.
Simultaneous fit of coupling modifiers

• Probe for 6 couplings simultaneously: $\kappa_V, \kappa_t, \kappa_b, \kappa_T, \kappa_g, \kappa_\gamma$

 • assume custodial and up-down fermion symmetry:
 $\kappa_W = \kappa_Z = \kappa_V$ & $\kappa_u = \kappa_c = \kappa_t$ & $\kappa_d = \kappa_s = \kappa_b$ & $\kappa_e = \kappa_\mu = \kappa_T$

• No BSM decays: $BR_{BSM} = 0$

• In addition allow $BR_{BSM} > 0$, by adding requirement $\kappa_V \leq 1$ (common in EWSB)

All effective couplings in good agreement with SM
Searches for H→invisible

• Performed search using the VBF and associated ZH production modes

• Sensitive to non-SM invisible decays of the observed Higgs boson,
 • also sensitive to additional bosons with similar production and large invisible BR

• Combined all search VBF/ZH channels

Upper limit on the invisible BR, m_H=125GeV

\[\text{BR}_{\text{invisible}} < 0.58 \text{ @ 95% C.L.} \]

• Results also interpreted in terms of a Higgs-portal model of DM interactions.
 • DM interaction with nucleons through Higgs exchange diagram
 • reported limits for DM candidate as scalar, vector, or Majorana fermion (CMS-HIG-13-030)
Searches for $H \rightarrow \text{invisible}$

- Performed search using the VBF and associated ZH production modes

 - Sensitive to non-SM invisible decays of the observed Higgs boson,
 - also sensitive to additional bosons with similar production and large invisible BR

- Combined all search VBF/ZH channels

 Upper limit on the invisible BR, $m_H=125\,\text{GeV}$

 $\text{BR}_{\text{invisible}} < 0.58 \, @ \, 95\% \, \text{C.L.}$

- Results also interpreted in terms of a Higgs-portal model of DM interactions.
 - DM interaction with nucleons through Higgs exchange diagram
 - reported limits for DM candidate as scalar, vector, or Majorana fermion (CMS-HIG-13-030)
Summary

• CMS has analysed a comprehensive set of production and decay channels
 • Measured properties combining information from different channels:
 mass: \(m_H = 125.7 \pm 0.3^{\text{STAT}} \pm 0.3^{\text{SYST}} \) GeV
 spin-parity: compatible with \(J^P = 0^+ \)
 total width: \(\Gamma < 22 \) MeV @ 95% C.L.

• A wide range of Higgs coupling tests is performed
 • No significant deviation from SM predictions observed within the uncertainties

• Combined results for \(H \rightarrow \text{invisible} \)

• Next combination of CMS results expected soon

• All measurements show: the new boson is compatible with the SM Higgs boson!
Backup slides
Compact Muon Solenoid

Superconducting Coil
- Silicon Microstrips
- Pixels

Tracker
- Drift Tube Chambers (DT)
- Resistive Plate Chambers (RPC)
- Cathode Strip Chambers (CSC)

Calorimeters
- ECAL: Scintillating PbWO4 crystals
- HCAL: Plastic scintillator/brass sandwich

Iron Yoke
- Muon Endcaps

Total Weight: 12,500 t
Overall Diameter: 15 m
Overall Length: 21.6 m
Magnetic Field: 4 Tesla
Higgs production and decay modes

Production

Decay modes and branching ratios

Main contributions:

Low mass: \(H \rightarrow \gamma \gamma, \ H \rightarrow ZZ \) (also \(H \rightarrow WW \))

Intermediate/high mass: \(H \rightarrow WW, \ H \rightarrow ZZ \)

LHC Higgs XS WG:

arXiv:1101.0593,
arXiv:1201.3084,
arXiv:1209.0040

common inputs to experiments
Constraint on Higgs boson width

- Experimental resolution strongly limits direct width (Γ_H) measurement to ~ 1 GeV
 - SM Higgs decay width is 4.15 MeV at $m_H = 125.6$ GeV

- Important theoretical advances [*]:
 made possible to constrain the Higgs boson width using its off-shell production & decay away from the peak.

\[\sigma_{on-peak}^{gg \rightarrow ZZ} \propto \frac{g_{gH}^2 g_{HZZ}^2}{\Gamma} \]
\[\sigma_{off-peak}^{gg \rightarrow ZZ} \propto g_{gH}^2 g_{HZZ}^2 \]

experimental constraints on the width Γ_H with mild model-dependence

- Channels $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow ZZ \rightarrow 2l2\nu$
 m_{ZZ} distribution can be used alone, but kinematic observables improve sensitivity (sig-bkg interference significant, accounted properly)

$\Gamma_H < 22$ MeV at 95% C.L.,
$\Gamma_H < 5.4 \times \Gamma_H, \text{SM}$

[*] JHEP 08 (2012), Phys Rev D 88 (2013) 054024, see also talk by X. Janssen for details
Mass measurement validation with $Z \to 4l$

- Perform the mass measurement of the near-by $Z \to 4l$ resonance
 - identical procedure as for the new boson mass measurement (without δm_{4l} and KD),
 - relaxed phase space due to the limited statistics ($m_{Z2} > 4$ GeV)

Fit for Z mass/width in $Z \to 4l$ events

- $M_Z = 91.17 \pm 0.23 - 0.22$ GeV
- $\Gamma_Z = 2.86 \pm 0.51 - 0.47$ GeV

Likelihood scans for $4e, 4\mu, 2e2\mu$

- Assumed Z width 2.50 GeV

Compatible with the PDG values within uncertainties.