Theoretical status of triple Higgs coupling studies at the LHC

LHCP 2014, Columbia University (New York), USA

Julien Baglio | 2014, June 4th
Outline

1. Introduction
2. SM Higgs pair production at the LHC
3. Status of the studies of the triple Higgs coupling in the SM
4. BSM studies of the triple Higgs coupling
5. Outlook
Motivation: probing the Brout-Englert-Higgs potential

- From the scalar potential before EWSB: with a scalar $SU(2)$–doublet field ϕ, $Y_\phi = 1$:

$$V(\phi) = -m^2 |\phi|^2 + \lambda |\phi|^4$$

- $V(\phi)$ after EWSB, with $M_H^2 = 2m^2$, $v^2 = m^2/\lambda$:

$$\phi = \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \Rightarrow V(H) = \frac{1}{2} M_H^2 H^2 + \frac{1}{2} \frac{M_H^2}{v} H^3 + \frac{1}{8} \frac{M_H^2}{v^2} H^4 + \text{constant}$$
Motivation: probing the Brout-Englert-Higgs potential

- **Quartic Higgs coupling**: not accessible at current or foreseen collider energies (≤ 100 TeV) \cite{Plehn:2005py}

- **Triple Higgs coupling**: the ultimate probe of the shape of the SM Brout-Englert-Higgs potential

- **BSM physics**: triple Higgs coupling can depend on gauge parameters (for example in SUSY) and be enhanced
Historical recap: the early studies

- Early studies at lepton colliders:
 - Studies at a 2 TeV e^+e^- collider: SM triple Higgs coupling could be measured with a 10% accuracy for a light Higgs, in $\nu_e\bar{\nu}_eHH$ and W^+W^-HH modes (VBF modes) [Boudjema, Chopin, Z.Phys. C73 (1996) 85]
 - Complementary SM and MSSM studies: in addition to weak boson fusion, associated Higgs production with a weak gauge boson and triple Higgs production; 500 GeV e^+e^- collider could be enough for a 20% accuracy on the triple Higgs coupling [Djouadi, Kilian, Muhlleitner, Zerwas, Eur.Phys.J. C10 (1999) 27]

- Early studies at the LHC:
 - Comprehensive analysis of the $b\bar{b}\gamma\gamma$ channel: with a very high luminosity (6000 fb$^{-1}$) $\lambda = 0$ can be excluded at 90% CL [Baur, Plehn, Rainwater, Phys.Rev.Lett. 89 (2002) 151801; Phys.Rev. D67 (2003) 033003; Phys.Rev. D69 (2004) 053004]
SM Higgs pair production at the LHC
The main production channels

- **gluon fusion**
- **vector boson fusion**
- **double Higgs–strahlung**

NNLO in QCD (see next slides)

\[\sigma(pp \rightarrow HH + X) \ [fb] \]

\[M_H = 125 \text{ GeV} \]

\[gg \rightarrow HH \]

\[q\bar{q} \rightarrow HHq\bar{q} \]

\[q\bar{q}/gg \rightarrow t\bar{t}HH \]

\[q\bar{q}' \rightarrow WHH \]

\[q\bar{q}' \rightarrow ZHH \]

\[\sim 1000 \text{ times smaller than } \sigma(pp \rightarrow H + X) \]

\[\text{[J.B. et al, JHEP 1304 (2013) 151]} \]

Associated production with top quark

NLO in QCD

\[g \rightarrow HH \]

\[g \rightarrow H \]

\[g \rightarrow H \]

\[g \rightarrow t\bar{t} \]

\[\text{[Frederix et al, Phys.Lett. B732 (2014) 142]} \]

SM Higgs pair production at the LHC

J. Baglio – **HHH** coupling at the LHC: theory status

LHCP 2014, New York, USA

2014, June 4th
Gluon fusion: the largest cross section

LO inclusive cross section known exactly \((t + b \text{ loops})\) \cite{Eboli, Glover, v.d. Bij, Dicus, Willenbrock, Plehn, Spira, Zerwas}

QCD corrections to inclusive rate in the low energy limit \(\sqrt{s} \ll m_t\): NLO corrections \cite{Dawson, Dittmaier, Spira} + NNLO corrections (new in 2013!), +20% on top of NLO rate \cite{De Florian, Mazzitelli}

\[\begin{array}{c|c|c}
\sqrt{s} [\text{TeV}] & \sigma^{\text{NLO}} [\text{fb}] & \sigma^{\text{NNLO}} [\text{fb}] \\
8 & 8.2 & 9.8 \\
14 & 33.9 & 40.2 \\
33 & 207.3 & 242 \\
100 & 1417.8 & 1638 \\
\end{array} \]

NNLL resummation: \(\sim +20 - 30\%\) on top of NLO cross section, scale dependence stabilized \cite{Shao, Li, Li, Wang}

SM Higgs pair production at the LHC
J. Baglio – \textit{HHH} coupling at the LHC: theory status LHCP 2014, New York, USA
Gluon fusion: theoretical uncertainties

\(gg \rightarrow HH \) affected by sizeable uncertainties:

- **Scale uncertainty**: calculated at NLO with \(\frac{1}{2} \mu_0 \leq \mu_R, \mu_F \leq 2\mu_0, \mu_0 = M_{HH} \)
 \[\Delta^{\text{scale}} \simeq +20\%(+12\%) / -17\%(-10\%) \] at \(\sqrt{s} = 8(100) \text{ TeV} \)

- **PDF uncertainty**: gluon PDF at high-\(x \) less constrained, \(\alpha_s(M_Z^2) \) uncertainty
 \[\Delta_{90\%CL}^{\text{PDF}+\alpha_s} \simeq \pm 9\% \approx \pm 6\% \text{ at 100 TeV} \]

- **EFT approximation**: NLO correction only known in a top mass expansion (new 2013!)
 \(\Rightarrow \) estimate of \(\pm 10\% \) uncertainty [Grigo, Hoff, Melnikov, Steinhauser, Nucl.Phys. B875 (2013) 1]

\[\sigma(gg \rightarrow HH) \] [fb]

\(\sqrt{s} \) [TeV]

Total uncertainty: \(\simeq \pm 40\% \approx \pm 30\% \text{ at 100 TeV} \) [J.B. et al, JHEP 1304 (2013) 151]

With recent NNLO calculation, scale uncertainty reduced to \(\pm 9\%(\pm 6\%) \) at 8 (100) TeV

Vector boson fusion at NLO

\[pp \rightarrow qq \rightarrow qq\, WW/ZZ \rightarrow qqHH: \] the second production channel at the LHC

LO inclusive cross section known for a while

QCD corrections: NLO corrections to inclusive rates and differential distributions

\[\text{[J.B. et al, JHEP 1304 (2013) 151]} \] implemented in VBFNLO (and now publicly available!)

\[\simeq +7\% \text{ correction} \]

(similar to single Higgs case)

<table>
<thead>
<tr>
<th>[\sqrt{s} \text{ [TeV]}]</th>
<th>[\sigma^{\text{NLO}} \text{ [fb]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.49</td>
</tr>
<tr>
<td>14</td>
<td>2.01</td>
</tr>
<tr>
<td>33</td>
<td>12.05</td>
</tr>
<tr>
<td>100</td>
<td>79.55</td>
</tr>
</tbody>
</table>

SM Higgs pair production at the LHC

J. Baglio - \textit{HHH} coupling at the LHC: theory status

LHCP 2014, New York, USA

2014, June 4th
Vector boson fusion: theoretical uncertainties

$qq \rightarrow HHqq$ is a clean process:

- Scale uncertainty: calculated at NLO with $\frac{1}{2} \mu_0 \leq \mu_R, \mu_F \leq 2 \mu_0$, $\mu_0 = Q_W/Z$

 $$\Delta_{\text{scale}} \simeq +3\% (+2\%) / -2\% (-1\%) \text{ at } \sqrt{s} = 8(33) \text{ TeV}$$

 Good precision compared to LO $\Delta_{\text{scale}} \simeq \pm 10\%$

- PDF uncertainty: total $\Delta_{\text{PDF} + \alpha_s}^{90\% \text{CL}} \simeq +7\% / -4\% \text{ (} \simeq +5\% / -4\% \text{ at } 33 \text{ TeV)}$

Total uncertainty: $\simeq +8\% / -5\% \text{ (14 TeV)}$ [J.B. et al, JHEP 1304 (2013) 151]

NNLO QCD corrections in the structure function approach: $+0.5\%$ on top of the NLO result, scale uncertainty at the percent level [L. Liu-Sheng et al, Phys.Rev. D89 (2014) 073001]
Monte Carlo tools and parton shower

Progress in 2014: Monte-Carlo tools including parton shower:

- \(gg \rightarrow HH \) merged to 1 jet: HERWIG++ implementation of \(HH + 1j \) production with real radiation merged to parton shower \(\Rightarrow \) 10\% theoretical uncertainty on the efficiencies of the cuts, much better than unmerged samples [Maierhöfer, Papaefstathiou, JHEP 1403 (2014) 126]

- All main processes interfaced with parton shower in the aMC@NLO framework: fully differential predictions at NLO for all channels [Frederix et al, Phys.Lett. B732 (2014) 142]
Status of the studies of the HHH coupling in the SM
Parton level analysis: overview of the main channels

Where to look for HH production? production cross section small ⇒ use \(H \to b\bar{b} \) decay channel at least once to retain some signal; foreseen luminosity at the LHC of 3000 \(fb^{-1} \)

4 interesting final states \textit{a priori}:

- \(b\bar{b}W(\to \ell\nu)W(\to \ell\nu) \): difficult because of MET, not promising [J.B. et al, JHEP 1304 (2013) 151]
- \(b\bar{b}W(\to \ell\nu)W(\to 2j) \): difficult because of MET, but less than above, worth doing it?
- \(b\bar{b}\gamma\gamma \): rates very small, lots of fake photon identification, still promising?
- \(b\bar{b}\tau\tau \): rates small, but quite promising and under consideration by experimental collaborations

Remark: analyses presented in the following have been performed using the \(gg \to HH \) production channel, \(HH + 2j \) (using also VBF process) analyses have just started

Triple Higgs coupling sensitivity in the production channels

How sensitive are the three main channels to the HHH coupling?

- VBF mode is the most sensitive channel
- Identical shape when increasing the center–of–mass energy but reduced sensitivity

\[\sigma(pp \rightarrow HH + X) \ [fb] \]
\[\sqrt{s} = 8 \text{ TeV}, M_H = 125 \text{ GeV} \]

\[\frac{\sigma(pp \rightarrow HH + X)}{\sigma^{SM}} \]
\[\sqrt{s} = 8 \text{ TeV}, M_H = 125 \text{ GeV} \]

\[J.B. \ et \ al, \ JHEP \ 1304 \ (2013) \ 151; \ \text{see also} \ Djouadi, \ Kilian, \ Mühlleitner, \ Zerwas, \ Eur.Phys.J. \ C10 \ (1999) \ 45-49 \]
How sensitive are the three main channels to the HHH coupling?

- VBF mode is the most sensitive channel
- Identical shape when increasing the center–of–mass energy but reduced sensitivity

\[\sigma(pp \to HH + X) \text{ [fb]} \]
\[\sqrt{s} = 14 \text{ TeV}, M_H = 125 \text{ GeV} \]

\[\frac{\sigma(pp \to HH + X)}{\sigma^{SM}} \]
\[\sqrt{s} = 14 \text{ TeV}, M_H = 125 \text{ GeV} \]

\[\lambda_{HHH}/\lambda_{HHH}^{SM} \]

Triple Higgs coupling sensitivity in the production channels

How sensitive are the three main channels to the HHH coupling?

- VBF mode is the most sensitive channel
- Identical shape when increasing the center–of–mass energy but reduced sensitivity

![Graph showing sensitivity of HHH coupling](image)

\[
\sigma(pp \rightarrow HH + X) \ [fb]
\]
\[
\sqrt{s} = 33 \ TeV, \ M_H = 125 \ GeV
\]

\[
\frac{\lambda_{HHH}}{\lambda_{SM}}\]

Status of the studies of the triple Higgs coupling in the SM

J. Baglio – HHH coupling at the LHC: theory status

LHCP 2014, New York, USA

2014, June 4th
Signal analysis in $b\bar{b}\tau\tau$ final state [Dolan, Englert, Spannowsky, JHEP 1210 (2012) 112]

Jet substructure analysis, the major improvement: fatjet analysis with boosted kinematics to distinguish in jet substructure the signal from large QCD backgrounds

the idea: define a large cone size (“fatjet”) and then work backward through the jet to define and separate softer subjets

Cut strategy: kinematic acceptance cuts + boosted topology cuts + **Fat jet cuts**

Results with a SHERPA/MADEVENT+HERWIG++ simulation:

$$S/B \approx 0.5$$, 95 signal events for 1000 fb$^{-1}$

- **Adding one jet in the final state ($hhj \rightarrow b\bar{b}\tau\tau j$):** with the same techniques, $S/B \approx 1.5$
- With the addition of kinematic bounding variables: 60% accuracy in trilinear Higgs coupling determination at 3 ab$^{-1}$ [Barr, Dolan, Englert, Spannowsky, Phys.Lett. B728 (2014) 308]
- With kinematic acceptance cuts + boosted topology cuts only and more optimistic $M_{\tau\tau}$ window: [J.B. et al, JHEP 1304 (2013) 151]

Optimistic expected significance at 14 TeV, $\mathcal{L} = 3000$ (300) fb$^{-1}$:

$$S/\sqrt{B} = 9.37 (2.97)$$, 330 (33) signal events
Jet substructure analysis, the major improvement: fatjet analysis with boosted kinematics to distinguish in jet substructure the signal from large QCD backgrounds

the idea: define a large cone size (“fatjet”) and then work backward through the jet to define and separate softer subjets

Cut strategy: kinematic acceptance cuts + boosted topology cuts + Fat jet cuts

Results with a SHERPA/MADEVENT+HERWIG++ simulation:

\[\frac{S}{B} \simeq 0.5, \text{ 95 signal events for 1000 } \text{fb}^{-1} \]

- Adding one jet in the final state (\(hhj \rightarrow b\bar{b}\tau\tau j \)): with the same techniques, \(\frac{S}{B} \simeq 1.5 \)
- With the addition of kinematic bounding variables: 60% accuracy in trilinear Higgs coupling determination at 3 \(ab^{-1} \) [Barr, Dolan, Englert, Spannowsky, Phys.Lett. B728 (2014) 308]
- With kinematic acceptance cuts + boosted topology cuts only and more optimistic \(M_{\tau\tau} \) window: [J.B. et al, JHEP 1304 (2013) 151]

Optimistic expected significance at 14 TeV, \(\mathcal{L} = 3000 \) (300) \(\text{fb}^{-1} \):

\[\frac{S}{\sqrt{B}} = 9.37 \) (2.97), 330 (33) signal events

Status of the studies of the triple Higgs coupling in the SM

J. Baglio – \(HHH \) coupling at the LHC: theory status

LHCP 2014, New York, USA

2014, June 4th

12/17
Jet substructure analysis, the major improvement: fatjet analysis with boosted kinematics to distinguish in jet substructure the signal from large QCD backgrounds

the idea: define a large cone size (“fatjet”) and then work backward through the jet to define and separate softer subjets

Cut strategy: kinematic acceptance cuts + boosted topology cuts + Fat jet cuts

Results with a SHERPA/MADEVENT+HERWIG++ simulation:

\[S/B \approx 0.5, \text{95 signal events for 1000 fb}^{-1} \]

- Adding one jet in the final state \((hhj \rightarrow b\bar{b}\tau\tau j)\): with the same techniques, \(S/B \approx 1.5\)
- With the addition of kinematic bounding variables: 60% accuracy in trilinear Higgs coupling determination at 3 ab\(^{-1}\) [Barr, Dolan, Englert, Spannowsky, Phys.Lett. B728 (2014) 308]
- With kinematic acceptance cuts + boosted topology cuts only and more optimistic \(M_{\tau\tau}\) window: [J.B. et al, JHEP 1304 (2013) 151]

Optimistic expected significance at 14 TeV, \(\mathcal{L} = 3000 \ (300) \text{ fb}^{-1}\):

\[S/\sqrt{B} = 9.37 \ (2.97), \text{330 (33) signal events} \]
Signal analysis in $b\bar{b}\gamma\gamma$ final state [J.B. et al, JHEP 1304 (2013) 151]

Parton level analysis: Pythia 6 using $gg \rightarrow HH$ matrix elements from HPAIR, rates rescaled to (N)NLO through K–factors, tag efficiency of 70% (b), fake photons with a rough detector simulation (Delphes)

Cut strategy: kinematic acceptance cuts + boosted topology cuts

Rough detector level expected significance at 14 TeV, $\mathcal{L} = 3000$ fb$^{-1}$:

$S/\sqrt{B} = 6.46$, 47 signal events

See also a study at high energy LHC (33 and 100 TeV) in [Yao, arXiv:1308.6302]

Status of the studies of the triple Higgs coupling in the SM
Others channels, more improvements

- **Using ratio of cross sections:** similar structure for higher-order corrections in \(\sigma(gg \to H)\) and \(\sigma(gg \to HH)\) \(\Rightarrow\) *uncertainties on their ratio \(C_{HH}\) much more reduced*

 \[\Delta^\mu C_{HH} \simeq \pm 2\%, \quad \Delta^{PDF} C_{HH} \simeq \pm 2\%\]
 [Goertz, Papaefstathiou, Yang, Zurita, JHEP 1306 (2013) 016]

Very promising confidence interval of \(\simeq +30\%/ -20\%\) on the reduced triple Higgs coupling \(\lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}\) when the three previous search channels are naively combined

- **Multivariate analysis in \(b\bar{b}\gamma\gamma\):** improved significance and probe of \(\lambda_{HHH}\) within 40% uncertainty at LHC 14 TeV with 3 \(ab^{-1}\)

- **Signal analysis in \(b\bar{b}W(\to \ell\nu)W(\to jj)\) final state:** a cut-based analysis with jet substructure technique and then improved with BDT multivariate analysis \(\Rightarrow\) *promising result of \(S/\sqrt{S+B} = 2.4\) with 9 events at 600 \(fb^{-1}\)*

- **New from April 2014, 4\(b\) analysis!** with jet substructure analysis, set a 95% CL limit \(\lambda_{HHH} \leq 1.2\) at 3 \(ab^{-1}\)
BSM studies of the triple Higgs coupling
Triple Higgs couplings in the 2HDM of type II

Disclaimer: this is one (biased) example of the various BSM studies on the market

Two-Higgs Doublet Model (2HDM): SM + 1 additional Higgs doublet ⇒ **5 Higgs bosons:**
2 CP-even h/H, 1 CP-odd A, 2 charged H^\pm (CP-conserving case)

Type II ⇔ 1 Higgs doublet coupling to up-type fermion, the other to down-type fermions
(example: the MSSM)

Using latest exp contraints and th constraints: *hhh coupling cannot be enhanced, non standard triple Higgs couplings can reach $5 \times g_{hhh}^{SM}$ at 2σ* [J.B, Eberhardt, Nierste, Wiebusch, arXiv:1403.1264]

Large enhancement in $\sigma(gg \rightarrow hh)$ due to resonant H production possible

A (short) selection of other BSM studies

Disclaimer: there has been a lot of activities in HH production regarding to BSM theories in the past few years. I apologize here for the missing papers, this is a limited selection

- **Anomalous ttH coupling effects** [Nishiwaki, Niyogi, Shivaji, JHEP 1404 (2014) 011]
- **MSSM studies:** 1.45 enhancement factor for $gg \to H_{SM}^{\text{like}} H_{SM}^{\text{like}}$ in the most favored parameter space region, see [Cao, Heng, Shang, Wan, Yang, JHEP 1304 (2013) 134]
- **NMSSM studies:**
 - 0.7 to 2.4 enhancement factor for $gg \to H_{SM}^{\text{like}} H_{SM}^{\text{like}}$ in the most favored parameter space region [Cao, Heng, Shang, Wan, Yang, JHEP 1304 (2013) 134]
 - sizeable enhancement in $\sigma \times BR$ predictions in $gg \to h_i;h_j \to b\bar{b}\tau\tau, b\bar{b}\gamma\gamma$ for 1 SM-like Higgs boson and a lighter Higgs state [Ellwanger, JHEP 1308 (2013) 077]
 - One-loop corrections to trilinear Higgs couplings in the real NMSM [Nhung, Mühlleitner, Streicher, Walz, JHEP 1311 (2013) 181]
- **Resonant new physics in HH production:**
- **SM + 2 singlets:** large enhancement in $gg \to H_{SM} H_{SM}$ [Ahriche, Arhrib, Nasri, JHEP 1402 (2014) 042]
- **Distinguishing BSM models with hhh couplings:** combined analysis of λ_{hhh} and λ_{hVV} through their ratio can help to distinguish between several BSM physics models [Efrati, Nir, arXiv:1401.0935]
- **Exotics:** pair production with color-octet scalars [Heng, Shang, Zhang, Zhu, JHEP 1402 (2014) 083], Minimal Dilaton Model [Cao, He, Wu, Zhang, Zhu, JHEP 1401 (2014) 150], etc.
Summary and outlook

Trilinear Higgs coupling at the LHC:

- **Major news from 2012:** the observation of a scalar particle at the LHC compatible with the SM Higgs boson
- Higgs couplings measurements era has began:
 - **HHH coupling of utmost importance for the scalar potential measurements**
- **HH production channels status:** 2013 has seen major improvements in the QCD corrections
 - VBF process now at NLO (total rates and differential distributions) and NNLO in the approximation of the structure function, Higgs–strahlung at NNLO (total rates)
 \[\Rightarrow \text{total theoretical uncertainty} < 10\% \text{ in VHH and VBF channels} \]
 - Gluon fusion channel at NNLO+NNLL in the infinite top mass limit for the total rate, top mass expansion at NLO \(\Rightarrow \) scale uncertainty down to \(\pm 8\% \) at 14 TeV

- **HH Parton level analysis:** jet substructure technique is the 2013 major improvement
 - \(b\bar{b}\tau\tau \) channel really promising even already at \(\mathcal{L} = 300 \text{ fb}^{-1} \)
 - \(b\bar{b}\gamma\gamma \) may also be very interesting at \(\mathcal{L} = 3000 \text{ fb}^{-1} \)
- **BSM activities:** lots of studies on the market, large enhancements in the triple Higgs couplings and/or SM-like \(hh \) production are possible
- **Stay tuned, more to come with improvements towards a full NLO calculation for \(gg \rightarrow HH \) including the differential distributions!**
Thank you!
More details on the analyses presented

- **Signal analysis in $b\bar{b}\tau\tau$:**

 Main backgrounds considered:
 - continuum production: $pp \to b\bar{b}\tau\tau$; $b\tau^+\nu_\tau \bar{b}\tau^-\bar{\nu}_\tau$ (mainly from $t\bar{t}$ production)
 - $ZH \to b\bar{b}\tau\tau$ production

 Define the subjet separation in the fat jet: using mass-drop condition,

 $$m_{j_1} \leq 0.66m_j & \min(p_{T,j_1}^2, p_{T,j_2}^2) / m_j^2 \Delta R_{j_1,j_2}^2 > 0.09$$

 τ reconstruction efficiency of 80%

- **Signal analysis in $b\bar{b}\gamma\gamma$:**

 Main backgrounds considered:
 - continuum production: $pp \to b\bar{b}\gamma\gamma$
 - $t\bar{t}H$ production with $H \to \gamma\gamma$ and $t \to W^+b$ decays, $ZH \to b\bar{b}\gamma\gamma$ production

- **Signal analysis in $b\bar{b}W(\to \ell\nu)W(\to jj)$:**

 Main backgrounds considered:
 - largest background: $pp \to t\bar{t}$ with semi-leptonic decays
 - $W(\to \ell\nu)b\bar{b} + 2j$ production, $H(\to WW)b\bar{b}$ production and $H + jj$ with misidentified jets