

Measurement of the Top Quark Mass With 2012 CMS Data-#36

Richard Nally¹, on behalf of the CMS Collaboration

¹Brown University, Providence, RI, USA

1) INTRODUCTION

- Top physics is a topic of active research at CMS
- State of the art in 2011: combined mass: $m_t =$ 173.36 ± 0.38 (stat.) ± 0.91 (syst.) GeV [2]
- Several measurements of the top mass with 2012 CMS data

(a) A semileptonic $t\bar{t}$ decay [1].

2) B-HADRON DECAY LENGTH [3]

- Extract m_t from transverse decay length L_{xy} of B-hadron formed by b quark in $t \rightarrow Wb$ decay
- ▶ Uses tracker, not calorimeter to avoid systematics from jet energy scale
- $\blacktriangleright L_{xv}$ has a linear dependency on m_t of order 25 30 μ m/GeV
- ► This dependency needs to be calibrated on a channel-by-channel basis
- Analysis looks at two channels
- ▶ 1 charged lepton, 4+ jets or 1 electron, 1 muon, 2+ jets
- Select secondary vertex with maximal L_{xy} in each accepted event

$m_t = 173.5 \pm 1.5 \text{ (stat)} \pm 1.3 \text{ (sys)} \pm 2.6 \text{ } (p_t)$

- (b) Simulated calibration curves for all three channels.
- (c) Distribution of L_{xy} in the μ +jets channel.

3) SEMILEPTONIC $t\bar{t}$ DECAYS: THE IDEOGRAM METHOD [4]

- Semileptonic decays $t\bar{t} \to bWbW \to b\ell\nu bq\bar{q}$
- From jets, can reconstruct W mass m_W^{reco}
- \blacktriangleright Kinematic fits performed on each event to find fitted top mass m_t^{fit}
- ▶ Ideogram method: simultaneous fit of m_t and jet scale factor (JSF)
- ▶ Template distributions of m_t^{fit} and m_W^{reco} are generated and fitted to data with two-dimensional likelihood \mathcal{L}
- $ightharpoonup m_t$ and JSF are found by minimizing $-2 \ln \mathcal{L}$
- $m_t = 172.04 \pm 0.19 \text{ (stat + JSF)} \pm 0.75$
- ► JSF = 1.007 ± 0.002 (stat) ± 0.012 (sys)
- First top mass result with sub-GeV uncertainty!

4) tt MASS DIFFERENCE [5]

- A test of CPT invariance of SM
- ightharpoonup Semileptonic $t\bar{t}$ decays: uses methods described in Section 3
- $\triangleright \Delta m_t$ is measured by separating events by lepton sign, measuring ideogram mass from each category, and subtratcting them
- $\Delta m_t = -272 \pm 196 \text{ (stat)} \pm 122 \text{ (sys)}$

- (g) Reconstructed top masses in events with a positive lepton.
- (h) Reconstructed top masses in events with a negative lepton.

5) FULLY LEPTONIC $t\bar{t}$ DECAYS: THE AMWT METHOD [6]

- Dilepton decays: two neutrinos so cannot reconstruct mass directly
- ► Use analytical matrix weighting technique (AMWT) to reconstruct top mass
- ▶ For each event, loop a hypothesis mass between 100 and 700 GeV in 1 GeV steps and assign weight to each value. Mass with highest weight is reconstructed value.
- Likelihood of MC templates generated with different top masses
- $m_t = 172.5 \pm 0.4 \text{ (stat)} \pm 1.5 \text{ (sys)} \text{ GeV}$
- Currently being performed on 2012 data

(i) AMWT distributions from data and a simulated sample with $m_t = 172.5$ GeV, with a plot of fitted likelihoods inset.

6) REFERENCES

- [1] CMS Public Data
- [2] CMS-PAS-TOP-11-018 [3] CMS-PAS-TOP-12-030
- [4] CMS-PAS-TOP-14-001 [5] CMS-PAS-TOP-12-031
- [6] Eur. Phys. J. C72 (2012) 2202