Strangeness production in near-side and away-side jets in pp collisions at ALICE using azimuthal correlations

Sandun Jayarathna¹ for the ALICE Collaboration **University of Houston**¹ jayarath@uh.edu

Motivation

Enhancement of Λ/K_{S}^{0} observed in p-Pb and Pb-Pb collisions [1, 2]

Understanding particle production mechanisms in soft and hard processes

 \square Measuring the Λ/K_{S}^{0} ratio in jets and in the underlying event is a possibility to further investigate this enhancement

 \Box Need to measure a baseline in

Associated yields per trigger

Associated yields per trigger particle as a function of $\Delta \varphi$ are computed by averaging $C(\Delta \varphi, \Delta \eta)$ over $|\Delta \eta| < 0.5$

Clear near-side ($\Delta \varphi \sim 0$) and away-side peak ($\Delta \varphi \sim \pi$) can be seen for both $\Lambda + \Lambda$ and K_{S}^{0} . All uncorrelated pairs below the minimum of the correlation functions are considered as coming from the underlying event and are thus subtracted

 \Box Extract the peak position and width by fitting the invariant mass of V⁰s in p_{T} intervals with a Gaussian + linear function

Choose signal candidates in 6σ region around the peak

Azimuthal correlations

 \Box Correlation between charged leading track (trigger, $6 < p_T < 12 \text{ GeV}/c$) and associated V⁰s (1 < p_T < 6 GeV/c) are measured using the correlation function $C(\Delta \varphi, \Delta \eta)$

 $C(\Delta \varphi, \Delta \eta) = \frac{1}{N_{Trio}} \frac{d^2 N_{Associated}}{d\Delta \varphi d\Delta \eta} = \beta \frac{S(\Delta \varphi, \Delta \eta)}{B(\Delta \varphi, \Delta \eta)}$

□ We measure the Signal (S) via same event pairs (left plot) and the Background (B) via mixed event pairs (right plot) ALICE Preliminary

 $\Box \beta$ is the normalization factor used to normalize mixed event distribution to 1 at $(\Delta \varphi, \Delta \eta) = (0, 0)$

Summary and outlook

Feeddown correction

In order to show a corrected Λ/K_{S}^{0} ratio the Λ s need to be feeddown corrected (remove As from Ξ^{-} and Ξ^{0}) in the near-side, away-side, and underlying event regions

- Investigating a novel data-driven feeddown correction using a distance of closest approach (DCA) scaling method in MC.
- The feeddown fraction in measured Λs is sensitive to the selection performed on the DCA of the V0 to the primary vertex (left plot)
- By measuring the relative change of signal for different DCA selections, the amount of feeddown can be estimated (right plot)

 \Box It has been shown that it is possible to classify the phase space as soft (underlying event) and hard (near-side, away-side) regions with respect to the charged leading track of the event

 \Box We observe the near-side and away-side jets and the underlying event without full jet reconstruction. This shows the potential of using azimuthal correlations to probe jet-sensitive physics

□ Novel feeddown method will greatly help to pin down a true yield in the soft and hard regions, allowing for an accurate representation of the primary Λ/K_{S}^{0} ratio in jets

References

ALICE Collaboration, Physics Letters B 728 (2014) 25–38 2. ALICE Collaboration, Phys. Rev. Lett. 111, 222301

