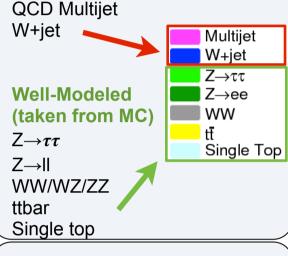


25. Search for a Heavy Neutral Particle Decaying into eµ, e τ , µ τ in pp Collisions at sqrt(s) = 7 TeV with ATLAS Keith Zengel, Brandeis University

Motivation


- •In the Standard Model, Lepton Flavor Violating (LFV) decays are forbidden, but....
 - -Neutrino oscillations show that lepton flavor conservation is not absolute
 - -LFV has not been observed among charged leptons (yet)
 - -LFV is permitted in several extensions of the standard model (LFV Leptoquarks, Models with additional gauge symmetries, etc.)
- •This poster focuses on an RPV SUSY model where a tau-sneutrino has LFV couplings
- •R-Parity is introduced in many Supersymmetric models to explain the stability of the proton, but there is no experimental evidence that demands R-parity conservation as the explanation
- •Leptons with large transverse momenta are identified cleanly, efficiently, and with good resolution at ATLAS

Backgrounds

Background events fall into 2 categories:

Instrumental (data driven estimations):

Event Selection

•Muons:

- •PT > 25 GeV, $|\eta|$ < 2.5
- •Isolated (track+calorimeter)

•Electrons:

- •PT > 25 GeV, $|\eta|$ < 2.47
- •Isolated (track+calorimeter)

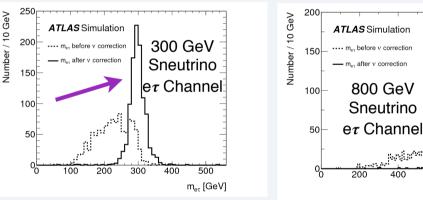
•Taus:

- Single track hadronic
- Medium boosted decision tree discriminant against jets

•Event level:

- •Single lepton (e/µ) trigger
- •1 LFV Pair
- Opposite charge
- •No extra leptons (isolated or not)
- • $\Delta \phi$ (leptons) > 2.7

Systematics


Dominant Sources: cross-sections of background processes, luminosity; lepton trigger, reconstruction, identification, and energy scale/resolution

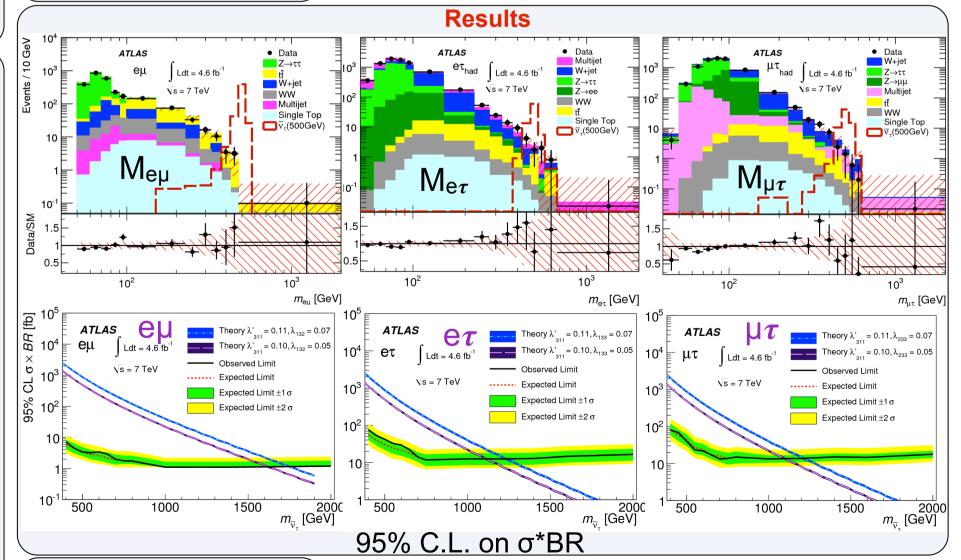
	$m_{\ell\ell'} > 200 \text{ GeV}$		
Process	$N_{e\mu}$	$N_{e au_{ m had}}$	$N_{\mu au_{ m had}}$
$Z/\gamma^* \to \tau \tau$	8 ± 1	24 ± 3	28 ± 4
$Z/\gamma^* \to ee$		44 ± 3	
$Z/\gamma^* o \mu \mu$			29 ± 3
$t ar{t}$	251 ± 30	90 ± 15	70 ± 13
Diboson	71 ± 8	26 ± 3	24 ± 3
Single top quark	39 ± 4	10 ± 2	8 ± 1
W+jets	90 ± 40	370 ± 80	470 ± 110
$\operatorname{multijet}$	6 ± 2	150 ± 50	24 ± 18
Total			
background	460 ± 60	720 ± 80	650 ± 90
Data	498	795	699

Event Yields and uncertainties for M > 200 GeV

Collinear Neutrino Approximation

- •In the e au and μau channels the neutrino from the hadronic au is missing
- •But the neutrino and remnant hadronic τ are highly boosted in the same direction \rightarrow Can reconstruct Narrow Resonance!
- •Take P_{Tv} , ϕ_v from E_T^{Miss} and assume $\eta_v = \eta_{\tau \text{ hadronic}} \rightarrow Full 4\text{-vector!}$

Signal Samples Before (dashed) and after (solid) neutrino correction


W+jet/QCD Estimation

•W+jet estimation:

- •1 real lepton from the W
- •1 lepton misidentified from jet
- •Mis-ID rate is poorly modeled
- •Normalize W+jet to data in a control region where E_TMiss > 30 GeV
- •The shape of the mass distribution is taken from the Monte Carlo simulation

•QCD multijet estimation

- Probability that a jet is misidentified as a lepton is independent of charge (within 10% uncertainty)
- •A "same sign" sample is constructed with same criteria, except the charge requirement is inverted
- •The "same sign" QCD is found by subtracting other MC and W+jet backgrounds from data in same sign sample
- Use "same sign" QCD distribution for opposite sign

Data Samples

2011 ATLAS data: Sqrt(s) = 7 TeV
Totaling 4.6 fb⁻¹

MC: Pythia (W/Z),MC@NLO (top)
Powheg (ttbar),Herwig (WW)

Reference

[1] ATLAS Collaboration, "Search for a heavy narrow resonance decaying to e mu, e tau, or mu tau with the ATLAS detector in sqrt(s)=7 TeV pp collisions at the LHC," Phys. Lett. B 723, 15 (2013), arXiv:1212.1272.