

Heavy Ion Physics at LHCb

LHCP 2014, New York, June, 2 - 7, 2014

Christian Elsasser [on behalf of the LHCb Collaboration]

Motivation

Proton-lead collisions at $\sqrt{s_{NN}} = 5$ TeV recorded by LHCb \Rightarrow 1.6 nb⁻¹

- Reference for nucleus-nucleus collisions
- Study of QCD in a yet barely explored regime
- Study of cold nuclear matter effects and their disentangling from QGP effects
- Input for the determination of nuclear PDF

Forward acceptance of LHCb allows to test unique phase space region \Rightarrow sensitivity for very low (e.g. $x_A = O(10^{-4})$ for $Q^2 = M_Z^2$) as well as very high x_A -values

Beam Configuration

Single-arm forward spectrometer \Rightarrow difference in beam configurations

Beam Configuration

Single-arm forward spectrometer \Rightarrow difference in beam configurations

Proton beam in the direction of the LHCb detector

Beam Configuration

Single-arm forward spectrometer \Rightarrow difference in beam configurations

Lead beam in the direction of the LHCb detector

J/ψ Production

[JHEP 02 (2014) 072]

Measurement in 1.5 < y < 4.0 (forward) and -5.0 < y < -2.5 (backward) as well as $p_{\rm T} <$ 14 GeV/c

Simultaneous fit of

- Invariant dimuon mass $m_{\mu}^{+}\mu^{-}$
- Pseudo proper time $t_z = (z_{J/\psi,vtx} z_{PV}) \cdot m_{J/\psi} / p_z \Rightarrow$ Discrimination prompt $J/\psi/J/\psi$ from *b* decays

J/ψ Production

[JHEP 02 (2014) 072]

Double differential cross-section $d^2\sigma/dp_T dy$ in the forward direction

Factor ~10 between prompt J/ψ and J/ψ from $b \Rightarrow$ similar to the values observed in pp collisions at $\sqrt{s} = 2.76$, 7 and 8 TeV [JHEP 02 (2013) 041], [EPJC (2011) 71 1645], [JHEP 06 (2013) 064]

J/ψ Production

[JHEP 02 (2014) 072]

Nuclear effects depend on kinematics

- Nuclear attenuation factor
$$R_{pA}(y, \sqrt{s_{NN}}) = \frac{1}{A} \frac{d\sigma_{pA}(y, \sqrt{s_{NN}})/dy}{d\sigma_{pp}(y, \sqrt{s_{NN}})/dy}$$

- Forward-backward ratio
$$R_{FB}(y, \sqrt{s_{NN}}) = \frac{d\sigma_{pA}(+|y|, \sqrt{s_{NN}})/dy}{d\sigma_{pA}(-|y|, \sqrt{s_{NN}})/dy}$$

Measurement of R_{pA} and R_{FB} in the overlap region of 2.5 < |y| < 4.0

Reference cross-section $\sigma_{pp}(\sqrt{s} = 5 \text{ TeV})$ for R_{pA} from interpolation of σ_{pp} at $\sqrt{s} = 2.76$, 7 and 8 TeV [LHCb-CONF-2013-013/ALICE-PUBLIC-2013-002]

[JHEP 02 (2014) 072]

Predictions based on nPDF at NLO sets and energy loss of initial state partons

[JHEP 0904 (2009) 65], [Int. J. Mod. Phys. E Vol. 22 (2013) 1330007], [JHEP 1305 (2013) 155]

 \Rightarrow significant sign of cold nuclear matter effects

Smaller suppression of J/ψ from *b* hadrons than on prompt J/ψ

Inclusive J/ ψ production: Measurements on inclusive J/ ψ production in agreement with those by ALICE [ALICE-PUBLIC-2013-002/LHCb-CONF-2013-013]

$\boldsymbol{\varUpsilon}$ Production

[arXiv:1405.5152]

Cross-section measurements in 1.5 < y < 4.0 (forward) and -5.0 < y < -2.5 (backward) as well as $p_T <$ 15 GeV/c

Low statistics prevent differential measurement

$\boldsymbol{\varUpsilon}$ Production

[arXiv:1405.5152]

Cross-section measurements in 1.5 < y < 4.0 (forward) and -5.0 < y < -2.5 (backward) as well as $p_T < 15$ GeV/*c*

$\sigma(\Upsilon(nS)) imes \mathcal{B}(\Upsilon(nS) o \mu^+ \mu^-)$					
	Forward	Backward			
Υ(1 <i>S</i>)	$380\pm35_{stat}\pm19_{syst}$ nb	$295\pm56_{stat}\pm27_{syst}$ nb			
Υ(2 <i>S</i>)	$75\pm19_{stat}\pm~5_{syst}~nb$	$81\pm39_{stat}\pm17_{syst}~nb$			
Υ(3 <i>S</i>)	$27\pm16_{stat}\pm~4_{syst}~nb$	< 39 nb @ 90 % C.L.			
Relative suppression factor R ^{nS/1S}					
	Forward	Backward			
$R^{2S/1S}$	$0.20\pm0.05_{stat}\pm0.01_{syst}$	$0.28\pm0.14_{stat}\pm0.05_{syst}$			
R ^{3S/1S}	$0.07\pm0.04_{stat}\pm0.01_{syst}$	<0.13 @ 90 % C.L.			

$\boldsymbol{\varUpsilon}$ Production

[arXiv:1405.5152]

Complementary measurement of cold nuclear matter effect with $\Upsilon(1S)$ based on $R_{\rm pPb}$ and $R_{\rm FB}$

Cold nuclear matter effects also visible in $\Upsilon(1S)$ production

Good agreement with predictions based on EPS09 NLO nPDF set and energy loss model of initial state partons

02/06/2014 Heavy Ion LHCb / Christian Elsasser / LHCP 2014

Z Production

Nuclear PDF sets so far mainly constrained by fixed target data \Rightarrow no constraints at very low and very high *x*_A-values

Z Production

[LHCb-PAPER-2014-022]

Measurement of $Z \rightarrow \mu^+\mu^-$ cross-section in fiducial region 60 < $m^+_\mu\mu^-$ < 120 GeV/ c^2 , $p_T(\mu) > 20$ GeV/c and 2.0 < $\eta(\mu) < 4.5$

11 candidates in the <u>forward</u> direction (*i.e. p* beam into LHCb; 1.1 nb⁻¹) Sample purity estimated to be \sim 99.7 %

Z Production

[LHCb-PAPER-2014-022]

Measurement of $Z \rightarrow \mu^+\mu^-$ cross-section in fiducial region 60 < $m^+_{\mu}\mu^-$ < 120 GeV/ c^2 , $p_T(\mu) > 20$ GeV/c and 2.0 < $\eta(\mu) < 4.5$

4 candidates in the <u>backward</u> direction (*i.e.* Pb beam into LHCb; 0.5 nb⁻¹) Sample purity estimated to be \sim 99.6 %

02/

Page 14

Z Production

[LHCb-PAPER-2014-022]

Measured cross-sections:

Forward $\sigma_{Z \to \mu^+ \mu^-} = 13.5^{+5.4}_{-4.0 \text{ stat}} \pm 1.2_{\text{syst}} \text{ nb}$ Backward $\sigma_{Z \to \mu^+ \mu^-} = 10.7^{+8.4}_{-5.1 \text{ stat}} \pm 1.0_{\text{syst}} \text{ nb}$

Predictions from NNLO calculation (FEWZ+MSTW08) with EPS09 NLO:

$$\begin{array}{l} \mbox{Forward} \quad \sigma_{Z \to \mu^+ \mu^-} = 13.12^{+0.11}_{-0.08 \ \mbox{theo}} \stackrel{+0.27}{_{-0.24} \ \mbox{PDF}} \stackrel{+0.03}{_{-0.24} \ \mbox{PDF}} \ \mbox{nb} \\ \mbox{Backward} \quad \sigma_{Z \to \mu^+ \mu^-} = 2.61^{+0.03}_{-0.03 \ \mbox{theo}} \stackrel{+0.07}{_{-0.06} \ \mbox{PDF}} \stackrel{+0.03}{_{-0.08 \ \mbox{nPDF}}} \ \mbox{nb} \\ \mbox{O6/2014} \ \mbox{Heavy lon LHCb / Christian Elsasser / LHCP 2014} \end{array}$$

Summary & Outlook

- Successful participation of LHCb in proton-lead data taking
- Measurement of J/ψ and Υ production \Rightarrow cold nuclear matter effects visible in J/ψ and $\Upsilon(1S)$ production
- First observation of Z production in proton-nucleus collisions

Summary & Outlook

- Successful participation of LHCb in proton-lead data taking
- Measurement of J/ψ and Υ production \Rightarrow cold nuclear matter effects visible in J/ψ and $\Upsilon(1S)$ production
- First observation of Z production in proton-nucleus collisions
- Other ongoing measurements in proton-lead collisions
- All presented measurements limited by statistics \Rightarrow benefit from larger data samples after the restart of LHC (anticipation of 10× more data in 2015)

Summary & Outlook

- Successful participation of LHCb in proton-lead data taking
- Measurement of J/ψ and Υ production \Rightarrow cold nuclear matter effects visible in J/ψ and $\Upsilon(1S)$ production
- First observation of Z production in proton-nucleus collisions
- Other ongoing measurements in proton-lead collisions
- All presented measurements limited by statistics \Rightarrow benefit from larger data samples after the restart of LHC (anticipation of 10× more data in 2015)

Only a small part of LHCb's potential in proton-lead collisions so far utilised

Back-up

Data Taking

Data in both beam configuration taken with both magnet polarities

Track Multiplicity

[LHCb-CONF-2013-008]

As expected larger (track) multiplicity in the backward than in the forward sample

No difference between the magnet polarities

Interpolation of Cross-sections

Interpolation of Onia cross-sections to $\sqrt{s_{NN}} = 5$ TeV tested with

- Linear: $\sigma(\sqrt{s}) = a_0 + \sqrt{s}a_1$ (shown in plot)
- Power-law: $(\sqrt{s}/a_0)^{\gamma}$
- Exponential: $a_0 \cdot (1 - \exp(-\sqrt{s}/\lambda))$

Systematic Uncertainties J/ψ Production

Source	Forward [%]	Backward [%]	
Muon-ID	1.3	1.3	
Trk Eff.	1.5	1.5	
Mass fit	2.3	3.4	
Luminosity	1.9	2.1	
${\cal B}(J\!/\psi ightarrow \mu^+\mu^-)$	1.0	1.0	
Uncorrelated between bins			
Binning	0.1 - 8.7	0.1 - 6.1	
Multiplicity weight	0.1 - 3.0	0.2 - 4.3	
t_z fit (J/ ψ from b)	0.2 - 12.0	0.2 - 13.0	

Systematic Uncertainties $\ensuremath{\mathcal{T}}$ Production

	Forward [%]			Backward [%]		
Source	Υ(1 <i>S</i>)	Υ(2 <i>S</i>)	Υ(3 <i>S</i>)	Υ(1 <i>S</i>)	Υ(2 <i>S</i>)	Υ(3 <i>S</i>)
Muon-ID	1.3	1.3	1.3	1.3	1.3	1.3
Trk Eff.	1.5	1.5	1.5	1.5	1.5	1.5
Mass fit	1.1	4.9	13.0	1.8	19.0	90.0
Luminosity	1.9	1.9	1.9	2.1	2.1	2.1
Trigger	1.9	1.9	1.9	2.1	2.1	2.1
Binning	2.1	2.1	2.1	5.0	5.0	5.0
Reconstruction	1.5	1.5	1.5	1.5	1.5	1.5
Total	5.5	7.3	14.0	9.8	21.0	90.0

Systematic Uncertainties Z Production

Source	Forward [%]	Backward [%]
Muon-ID/Trk/Sel/Rec. Eff.	8.4	8.7
Purity est.	0.5	0.5
GEC ^a	0.0	1.9
Multiplicity weight	1.5	2.0
Luminosity	1.9	2.1
Total	8.7	9.4

^a Global event cuts

Significance of Z Signal

Given the purity estimated from *pp* collisions reweighted for the different track multiplicity in *p*Pb collisions, the obtained significance is:

Forward 10.4 σ (Expected background yield: 0.028)

Backward 6.8 σ (Expected background yield: 0.004)