

Evolution studies of the CMS ECAL endcap response and upgrade design options for High-Luminosity LHC

Andrea Massironi

Northeastern University on behalf of the CMS collaboration

Physics motivations

Study of Higgs properties, maintain/improve resolution for $H \rightarrow \gamma \gamma$ reconstruction, and electron/jet calibration even in the very forward region

An excellent energy resolution (0.5% constant term), essential for the Higgs boson search in the H $\rightarrow \gamma \gamma$ channel

End-cap crystals

A supermodule from ECAL barrel

ECAL

- Scintillating crystals:
 - Radiation hardness → only transparency affected
- Fast scintillation \rightarrow <100 ns Structure and readout:
 - Barrel (EB) \rightarrow → Avalanche Photodiodes (APD) $|\eta| < 1.48$ • Endcap (EE) \rightarrow 1.48 < $|\eta|$ < 3.00 \rightarrow Vacuum Phototriodes (VPT)
- 61200 PbWO₄ crystals 2.2 x 2.2 x 23 cm³ in EB
- 2 x 7324 PbWO₄ crystals 2.5 x 2.5 x 22 cm³ in EE
 - Density: 8.28 g/cm³ High granularity
 - Radiation length: 0.89 cm Molière radius: 2.19 cm

A PbWO₄ endcap crystal

Evolution studies CMS Preliminary 2011-2012 Relative response Noise CMS ECAL • the APD suffers from increasing dark current which grows linearly with proton fluence $|\eta| < 1.4$ • 1.5 < $|\eta| < 1.8$ • 1.8 < |η| < 2.1 • $0.3 - 2.1 < |\eta| < 2.4$ Response loss Radiation damage creates clusters of defects 10⁻¹ which cause light transmission loss Simulation Damages from γ radiation is recovered 50 GeV e Hadron damage is permanent and cumulative 10 fb⁻¹, 5E+33 cm⁻²s⁻¹ 921, 24, 934, 14, 0145 9345 9245 245 0345 0345 145 100 fb⁻¹, 1E+34 cm⁻²s⁻¹ 500 fb⁻¹, 2E+34 cm⁻²s⁻¹ • VPT ageing: response loss due to 1000 fb⁻¹, 5E+34 cm⁻²s⁻¹ -2000 fb⁻¹, 5E+34 cm⁻²s⁻¹ cumulative charge taken from photocathode 3000 fb⁻¹, 5E+34 cm⁻²s⁻¹ Simulation model validated with test-beam data • Exponential degradation up to a plateau at 90% ($|\eta|$ ~2.2) to 77% (high η) for L~ 3000 fb⁻¹ 2 2.5 versus proton fluence LO los CMS ECAL PRELIMINARY SIC LYSO:Ce St.Gobain LYSO:Ce (70 days) O BTCP PbWO4 SIC PbWO₄ MC simulation 10⁻¹ → data: ECAL test beam 2012 300 days after irradiation 10¹³ 10¹² 10¹⁴ Φ_{p} (cm⁻²) $\mu_{_{\mathrm{IND}}}$ (420 nm) (m $^{\text{-1}}$) • $\mu_{ind} = 1/L \ln \left(T_{before \, irradiation} / T_{after \, irradiation} \right)$, $L = crystal \, length$, $T = light \, transmission$ Light Output loss, LO_{loss} • Crystal transparency is reduced due to increase of μ_{ind}

Upgrade options

Shashlik

- W absorber layers and LYSO/CeF sampling layers read out with quartz capillaries with wave-shifter cores and GaInP photosensors
 - Thick quartz wall or quartz rod options as the wavelength shifting capillaries
 - Radiation hardness
 - High brightness High density

High density		
	W/LYSO(Ce)	PbWO ₄
Length (cm)	11.4	22.0
Transverse size (cm)	1.4	2.86
# modules for 2 EE	60800	14648
Average Moliere Radius (cm)	1.37	2.1
Average Radiation Length X_0 (cm)	0.51	0.89
Light Yield (relative to NaI)	85	0.3
Emission Wavelength (nm)	420	420
Decay time (ns)	40	25
Temperature Dependence (%/C)	-0.2	-2.2

High Granularity Calorimeter (HGC)

- High granularity calorimeter with detailed sampling in both hadronic and electromagnetic sections with pointing capability
- Sampling calorimeter with layers of silicon detectors
- Optimized to profit from particle flow reconstruction algorithms
- Electromagnetic Calorimeter (EE)
 - 30 samplings of lead/copper total of 25 X₀
- Front Hadronic Calorimeter (FH)
 - 12 layers of brass/silicon each 0.33 interaction lengths (4 X₀)

	EE	FH	Total
Area of silicon (m ²)	420	250	670
Channels	3.7M	1.4M	5.1M
Detector Modules	19000	11000	30000
Weight One Endcap (tonnes)	16	63	79
Number of plates	30	12	42
Front end power (kW)	70-80	20-30	90-110

