$\mathcal{B}SM \mathcal{H}iggs \mathcal{P}roperties$

Milada Margarete Mühlleitner (Karlsruhe Institute of Technology)

> LHCP14 Columbia University June 2-7, 2014

$\mathcal{B}SM \mathcal{H}iggs \mathcal{P}roperties - \mathcal{N}ot \mathcal{S}USY$

Milada Margarete Mühlleitner (Karlsruhe Institute of Technology)

> LHCP14 Columbia University June 2-7, 2014

$\mathcal{LHC} \ \mathcal{D}iscovery \ of \ \mathcal{N}ew \ \mathcal{S}calar \ \mathcal{P}article$

ATLAS-CONF-2013-12

CMS-PAS-HIG-13-002

• Investigation of properties of scalar particle:

• Investigation of properties of scalar particle: ~> Higgs Boson

$\mathcal It$ is the $\mathcal Higgs\ \mathcal Boson$

$\mathcal I t$ is the $\mathcal H iggs\ \mathcal B oson$

\mathcal{T} he \mathcal{M} enu

- ♦ Introduction
- ♦ Composite Higgs Boson
 - * Phenomenological Implications
- ♦ Effective Lagrangian Approach
 - * Relevant Operators
- ♦ Specific Models
 - * Coupling Measurements
- ♦ Summary

\mathcal{I} ntroduction

$\mathcal{O}\text{pen }\mathcal{P}\text{roblems}$

- ♦ What is the mechanism beyond EWSB? Weak or strong dynamics?
- ♦ Huge Higgs mass corrections finetuning?
- ♦ Do the gauge couplings unify?
- ◊ Incorporation of gravity?
- ◇ Puzzling spectrum of fermion masses and mixings
- ♦ What is the nature of Dark Matter?
- ◊ Origin of matter-antimatter asymmetry?
- ♦ New sources of CP violation?

 $\overline{\overset{15}{^{10}}}\log Q$

30

20

10

 $\overline{\overset{15}{^{10}}}\log Q$

10

 $1/\alpha_s$

10

30

20 10

۵ ...

$\mathcal{B}ig\ \mathcal{Q}uestions$ - $\mathcal{B}ig\ \mathcal{I}deas$

- ♦ What is the mechanism beyond EWSB? Weak or strong dynamics?
- ♦ Huge Higgs mass corrections finetuning?
- $\diamond~$ Do the gauge couplings unify?
- ♦ Incorporation of gravity?
- ◇ Puzzling spectrum of fermion masses and mixings
- ♦ What is the nature of Dark Matter?
- ◊ Origin of matter-antimatter asymmetry?
- ♦ New sources of CP violation?

Supersymmetry Compositeness Extra Dimensions **Extended Higgs Sectors** Top Partner W'/Z'Minimal Dark Matter

Hidden Sector ...

۵ ...

$\mathcal{B}ig\ \mathcal{Q}uestions$ - $\mathcal{B}ig\ \mathcal{I}deas$

- ♦ What is the mechanism beyond EWSB? Weak or strong dynamics?
- ♦ Huge Higgs mass corrections finetuning?
- ♦ Do the gauge couplings unify?
- ◊ Incorporation of gravity?
- ◇ Puzzling spectrum of fermion masses and mixings
- ♦ What is the nature of Dark Matter?
- Origin of matter-antimatter asymmetry?
- ◊ New sources of CP violation?

٥ ...

No Observation of Physics Beyond the SM so Far!

DISAPPOINTMENT

Supersymmetry

Compositeness

Extra Dimensions

Extended Higgs Sectors

Top Partner W'/Z'

Minimal Dark Matter

Hidden Sector ...

$\mathcal{B}ig\ \mathcal{Q}uestions$ - $\mathcal{B}ig\ \mathcal{I}deas$

- ♦ What is the mechanism beyond EWSB? Weak or strong dynamics?
- ♦ Huge Higgs mass corrections finetuning?
- ♦ Do the gauge couplings unify?
- ◊ Incorporation of gravity?
- ◇ Puzzling spectrum of fermion masses and mixings
- ♦ What is the nature of Dark Matter?
- Origin of matter-antimatter asymmetry?
- ◊ New sources of CP violation?

٥ ...

Naturalness:

New Physics just around the corner

Supersymmetry

Compositeness

Extra Dimensions

Extended Higgs Sectors

Top Partner W'/Z'

Minimal Dark Matter

Hidden Sector ...

What Can We Learn From Higgs Physics?

What is the Dynamical Origin of EWSB?

 \mathcal{I} s the Higgs boson \mathcal{E} lementary or \mathcal{C} omposite?

Cartoon from R.Contino [1005.4269]

 \mathcal{C} omposite \mathcal{H} iggs \mathcal{S} trong EWSB

$\mathcal{C}omposite \ \mathcal{H}iggs \ \mathcal{B}oson$

Kaplan,Georgi; Dimopoulos eal; Dugan eal

• Bound state from a Strongly Interacting Sector not much above weak scale

 $\mathcal{G}/\mathcal{H}_1:$ contains Higgs boson as Nambu-Goldstone Boson

• SM Gauge Group

- * $\mathcal{H}_0 \subset \mathcal{G}$ gauged by external vector bosons
- * Identify $\mathcal{H}_0 = G_{\mathsf{SM}} = SU(2)_L \times U(1)_Y$; $\mathcal{G} \to \mathcal{H}_1 \supset G_{\mathsf{SM}}$
- * \mathcal{H}_1 contains 'custodial' $SO(4) \cong SU(2)_L \times SU(2)_R$ (protect T parameter)
- * SM fields are external to strong sector \rightsquigarrow elementary

Composite Higgs Boson

• Possible symmetry patterns

Examples:

- ...

- SO(5)/SO(4): 4 PGBs = $W_L^{\pm}, Z_L, h \rightarrow$ Minimal Comp. Higgs Model Agas

-
$$SO(6)/SO(5)$$
: 5 PGBs = $W_L^{\pm}, Z_L, h, a \rightarrow \text{Next MCHM}$

Agashe, Contino, Pomarol Gripaios, Pomarol, Riva, Serra

For a list: Bellazzini,Csáki,Serra

- Higgs Boson Mass protected ← quantum corrections saturated at composite scale
- Higgs Potential generated radiatively
 - ♦ By gauge boson and top quark loops
 - $\diamond~$ EWSB triggered by top loops

• Partial Compositeness

Kaplan; Contino,Kramer,Son,Sundrum

♦ Elementary fermions couple linearly to heavy states of strong sector w/ same quantum numbers

$$\mathcal{L}_{pc} = -\Delta_L \bar{q}_L Q_R - \Delta_R \bar{T}_L t_R + h.c.$$

- Fermions acquire mass through mixing with new vector-like strong sector fermions
- \diamond Linear couplings violate ${\mathcal G}$ explicitly \rightsquigarrow Higgs potential induced
- ♦ Large top Yukawa couplings → top largely composite
- Light Higgs boson requires light top partners

Matsedonskyi,Panico,Wulzer; Redi,Tesi; Marzocca,Serone,Shu; Pomarol,Riva

$\mathcal{P}henomenological \ \mathcal{I}mplications?$

- \triangleright Modified Higgs couplings to SM gauge bosons and fermions
 - * Unitarity not restored any more in $V_L V_L$ scattering

$\mathcal{I}mplications \ of \ \mathcal{H}iggs \ \mathcal{C}oupling \ \mathcal{D}eviations$

$$\mathcal{A} = rac{s}{v^2}$$

$\mathcal{I}mplications \ of \ \mathcal{H}iggs \ \mathcal{C}oupling \ \mathcal{D}eviations$

• Longitudinal W boson scattering

$\mathcal{I}mplications \ of \ \mathcal{H}iggs \ \mathcal{C}oupling \ \mathcal{D}eviations$

• Longitudinal W boson scattering

 $\kappa_V = 1$ perturbative unitarity in $WW \to WW$

• Higgs couplings deviate from SM couplings $\Rightarrow VV \rightarrow VV$ and $VV \rightarrow hh$ grow with E^2

Giudice, Grojean, Pomarol, Rattazzi; Contino eal '10,'13

\mathcal{P} henomenological \mathcal{I} mplications?

\geq	Modified Higgs couplings to SM gauge bosons	and fermions
	$*$ Unitarity not restored any more in $V_L V_L$	Giudice eal; Contino eal '10,'13
	* Higgs production and decay rates changed	Espinosa, Grojean, MMM
	* Influences compatibility with EWPT	Giudice eal; Barbieri eal; Contino; Agashe eal; Gillioz; Lavoura,Silva; Lodone; Anastasiou eal; Grojean eal; Gröber eal
\triangleright	New couplings * Compatibility with Flavour Constraints Keren	Agashe,Perez,Soni; Csaki eal; Blanke eal; Bauer eal; Redi,Weiler; n-Zur eal; Barbieri eal; Redi; Vignaroli; Da Rold eal; Delaunay eal
	* Influences Double Higgs Production	Gröber, MMM; Contino eal; Gillioz eal
\triangleright	New Resonances * Compatibility with LHC searches	Gillioz,Gröber,Kapuvari,MMM
\triangleright	Partial Compositeness * Compatibility with Flavour Constraints	Kaplan;Contino,Kramer,Son,Sundrum

* New particles in Loop induced processes

* Modified Higgs Yukawa couplings

* Compatibibility with direct LHC Searches for new fermions, with EWPT

$\mathcal{H}iggs \ \mathcal{A}nomalous \ \mathcal{C}ouplings$

• **SILH effective Lagrangian** (SILH = strongly interacting light Higgs) expansion for small

Giudice, Grojean, Pomarol, Rattazzi

SM limit for $\xi \to 0$

Higgs Anomalous Couplings

- Large ξ ? The 5D MCHM (SO(5)/SO(4)) provides completion for large ξ Contino eal; Agashe eal
- Gauge couplings

 $g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi}$

• Fermion couplings depend on embedding into representations of the bulk symmetry

spinorial representations of SO(5)fundamental representations of SO(5)MCHM4 $g_{Hff} = g_{Hff}^{SM} \sqrt{1 - \xi} \equiv g_{Hff}^{SM} c$ universal shift of couplings

no modifications of BRs

• **Higgs self-couplings** also model-dependent

MCHM5
$$g_{Hff} = g_{Hff}^{SM} \frac{1-2\xi}{\sqrt{1-\xi}} \equiv g_{Hff}^{SM} c$$

BRs depend on $\xi = v^2/f^2$

Contino eal; Gröber, MMM; Bock eal; Barger eal

$\mathcal{H}iggs \ \mathcal{A}nomalous \ \mathcal{C}ouplings$

Implementation for Higgs BRs: eHDECAY
URL: http://www.itp.kit.edu/~maggie/eHDECAY/

• Gluon Fusion Production:

- \triangleright NNLO corrections
- ▷ Two-loop Yukawa corrections in top partner singlet model

Contino, Ghezzi, Grojean, MMM, Spira

'11 E.Furlan '13 Dawson,Furlan

Constraints on the $\mathcal Oblique\ \mathcal Parameters$

$\mathcal{H}eavy \ \mathcal{Q}uark \ \mathcal{P}artners \ and \ \mathcal{LHC} \ \mathcal{S}earches$

• Decay Channels:

Top Partners:	$\mathcal{T} \to Wb, \ Zt, \ ht$
Bottom Partners:	$\mathcal{B} \to Wt, \ Zb, \ hb$
Charge-5/3 Fermions:	$\mathcal{X} \to Wt$

• Limits from LHC Experiments:

The ATLAS Collaboration: ATLAS-CONF-2013-018, 051, 056, 060 The CMS Collaboration: CMS PAS B2G-12-019, Phys. Lett. **B729** (2014) 149

$\mathcal{H}eavy \ \mathcal{Q}uark \ \mathcal{P}artners \ and \ \mathcal{LHC} \ \mathcal{S}earches$

Gillioz, Gröber, Kapuvari, MMM

M.M. Mühlleitner, LHCP14, June 2-7, 2014, Columbio University, NY

• Compatibility with ATLAS Moriond'13 data, EWPD, $|V_{tb}|$, Gillioz, Gröber, Kapuvari, MM direct searches, w/ top&bottom partners ($\xi^{\text{best fit}} = v^2/f^2 = 0.096$)

2.5

2

1.5

0.5

0

2.5

2

1.5

1

0.5

0

0

μw/z

0

£

• Compatibility with ATLAS Moriond'13 data, EWPD, $|V_{tb}|$, Gillioz, Gröber, Kapuvari, MM direct searches, w/ top&bottom partners ($\xi^{\text{best fit}} = v^2/f^2 = 0.096$)

• Compatibility with CMS Moriond'13 data, EWPD, $|V_{tb}|$, Gillioz, Gröber, Kapuvari, MM direct searches, w/ top&bottom partners ($\xi^{\text{best fit}} = v^2/f^2 = 0.055$)

$\mathcal{L}oop \ \mathcal{P}rocesses: \ \mathcal{S}ensitivity \ to \ the \ \mathcal{T}op \ \mathcal{P}artners?$

• Single Higgs production through gluon fusion: dominant production process at LHC

- ▷ Mediated by top and bottom loops and heavy quark loops; here heavy top partners
- ▷ Sensitivity to details of heavy composite sector?

$\mathcal{L}oop \ \mathcal{P}rocesses: \ \mathcal{S}ensitivity \ to \ the \ \mathcal{T}op \ \mathcal{P}artners?$

• Single Higgs production through gluon fusion: via Low-Energy Theorem (LET)

- Gluon fusion computed within LET is insensitive to details of the couplings and masses of strong sector
 Falkowski;Low,Vichi;Azatov,Galloway;Furlan;Gillioz eal;Delaunay eal;Montull eal
- ▷ Reason: Cancellation between
 - $\ast\,$ Correction of top Yukawa coupling due to mixing with heavy resonances and
 - * Loops of extra fermions
- $\rhd\Rightarrow$ Cross section depends only on Higgs non-linearities $\sim\xi=v^2/f^2$, mixing effects drop out
- \triangleright LET approximates full cross section within a few percent

Single Higgs Production in $\mathcal{MCHM5}$ w/ Top Partners

Gillioz, Gröber, Grojean, MMM, Salvioni

- Green points: allowed by EWPD and collider constraints
- Grey points: excluded by current collider constraints

• Orange: Projected exclusion by LHC8

$\mathcal{W}hat about \ \mathcal{C}omposite \ \mathcal{D}ouble \ \mathcal{H}iggs \ \mathcal{P}roduction?$

- Double Higgs production through gluon fusion:
 - * sensitive to trilinear Higgs self-coupling
 - * access to anomalous $HHf\bar{f}$ coupling

Baur,Glover; Spira eal; Djouadi,Kilian,MMM,Zerwas;Gröber,MMM

Contino eal '12

- \vartriangleright Can be enhanced compared to the SM process
- ▷ Mediated by top and bottom loops and heavy quark loops; here heavy top partners
- \triangleright Different fermions can contribute within one loop
- ▷ Sensitivity to details of heavy composite sector?

$\mathcal{D}ouble \ \mathcal{H}iggs \ \mathcal{P}roduction \ in \ \mathcal{MCHM5} \ w/ \ \mathcal{T}op \ \mathcal{P}artners$

Gillioz, Gröber, Grojean, MMM, Salvioni

$\mathcal{H} ow \text{ to resolve the } \mathcal{T} op \ \mathcal{L} oops?$

- Inclusive gluon fusion Higgs production cannot disentangle
 - * long distance physics (modified top coupling)
 - * short distance physics (new particles running in the loop)
- Determination of top Yukawa coupling in $t\bar{t}H$ production: difficult 14%-4% LHC¹⁴₃₀₀-LHC¹⁴₃₀₀₀ vs 10%-4% ILC⁵⁰⁰₅₀₀-ILC¹⁰⁰⁰₁₀₀₀
- Alternative: Boosted Higgs production in association with a high p_T jet

Banfi, Martin, Sanz; Azatov, Paul; Grojean, Salvioni, Schlaffer, Weiler; Englert, McCullough, Spannowsky

How to resolve the \mathcal{T} op \mathcal{L} oops?

• High $p_T \sim$ sensitivity to detail of loop particles

Baur, Glover; Langenegger eal

- **Remarks** \diamond p_T distribution only known at LO
 - \diamond in NLO in the heavy m_t approximation

Schmidt; deFlorian eal; Ravindran eal; Glosser, Schmidt; Anastasiou eal; Boughezal eal; Harlander eal

♦ *b*-quark in resummed *p*_T Grazzini,Sargsyan; Alwall eal; Bagnaschi eal; Mantler,Wiesemann; Banfi eal

Grojean, Salvioni, Schlaffer, Weiler

$\mathcal{E} \textit{ffective } \mathcal{L} \textit{agrangian } \mathcal{A} \textit{pproach}$

$\mathcal{G}eneral \ \mathcal{F}ramework \ for \ \mathcal{BSM} \ \mathcal{S}tudies$

Aim: Study large class of BSM models through Higgs physics

* Higgs couplings to SM particles, g_{hff} , g_{hVV} , Spin and CP quantum numbers, \mathcal{J}^{CP} , Higgs self-interactions, g_{hhh} , g_{hhhh}

Indirect impact of BSM on Higgs Physics

- $\ast\,$ general coupling modifications: absolute value and tensor structure $\Rightarrow\,$
- * determination of couplings and CP properties cannot be treated separately in general
- * coupling modifications from new particles in loop induced couplings (e.g. g_{hgg} , $g_{h\gamma\gamma}$), mixing with other scalar states (e.g. extended Higgs sector, portal Higgs)

Direct impact of BSM Physics

Higgs decays into new lighter particles, e.g. Higgs-to-Higgs decays, invisible Higgs decays;
SM-like Higgs from cascade decays; detection of new particles; ...

 \mathcal{H} ow access BSM physics in a general, model-independent way?

M.M. Mühlleitner, LHCP14, June 2-7, 2014, Columbio University, NY

$\mathcal{E} \textit{ffective } \mathcal{L} \textit{agrangian } \mathcal{A} \textit{pproach}$

• Natural Mechanisms for EWSB

- $\diamond~$ New physics at some scale $\lambda \sim \mathcal{O}({\rm TeV})$
- $\diamond\,$ New physics generates deviations in SM Higgs physics
- Convenient framework for model-independent analysis: Effective Lagrangian Approach

Burgess, Schnitzer; Leung eal ;Buchmüller, Wyler; Grzadkowski eal; Hagiwara, Ishihara, Szalapski, Zeppenfeld; Giudice eal

- * assume few basic principles (e.g. field content, SM gauge symmetries)
- * parametrize SM deviations by higher-dimensional operators built of SM fields
- $*\,$ Operators = low-energy remnants of heavy NP integrated out at $\Lambda \Rightarrow$
- $\ast~$ Operators suppressed by scale Λ
- Example: $SU(3) \times SU(2) \times U(1)$ invariance \rightsquigarrow leading NP effects described by D = 6 operators

$$\mathcal{L}_{\mathsf{eff}} = \sum_n rac{f_n}{\Lambda^2} \mathcal{O}_n$$

Choice of Basis

- Number of Independent Dim-6 Operators 59 assuming 1 generation of fermions
- Different operator bases used in the literature
- What defines a good basis?
 - $\diamond\,$ captures in few operators impact of different NP scenarios
 - ◇ exploit correlations to eliminate redundant operators (EOM/field redefinitions)
 - $\diamond\,$ separate operators with different sizes in their coefficients \rightsquigarrow
 - $\diamond\,$ determine most relevant operators when investigating BSM scenarios
- **Operators relevant for Higgs physics:** e.g. Elias-Miró,Espinosa,Masso,Pomarol; Elias-Miró,Grojean,Gupta,Marzocca,Pomarol,Riva;Gupta,Pomarol,Riva
 - * Operators only affecting Higgs physics (CP-conserving): 8
 - * Operators related to EWPT (LEP1, LEP2, Tevatron): 7
 - * Operators related to TGC measurements (LEP2, LHC): 3

${\cal H}iggs \; {\cal P}rimaries$

• Higgs Primaries

Gupta, Pomarol, Riva

set of physical quantities best suited to constrain NP

- * Higgs/8: $h\gamma\gamma$, $hZ\gamma$, hgg, hff, hVV and h^3 couplings
- * EWPT/7, TGC/3

• Where to expect BSM effects?

- $\diamond\ h \to V f f$ already constrained from e.g. TGC
- $\diamond~BR(h \rightarrow Z\gamma)$ can still hide large deviations

${\cal H}iggs \; {\cal P}rimaries$

Higgs Primaries

set of physical quantities best suited to constrain NP

- * Higgs/8: $h\gamma\gamma$, $hZ\gamma$, hgg, hff, hVV and h^3 couplings
- * EWPT/7, TGC/3
- Where to expect BSM effects?
 - $\diamond \ h \rightarrow V f f$ already constrained from e.g. TGC
 - $\diamond~BR(h \rightarrow Z\gamma)$ can still hide large deviations

Gupta, Pomarol, Riva

 $h \rightarrow Z\gamma$ versus TGC

\mathcal{H} iggs \mathcal{P} rimaries

Higgs Primaries

set of physical quantities best suited to constrain NP

- * Higgs/8: $h\gamma\gamma$, $hZ\gamma$, hgg, hff, hVV and h^3 couplings
- * EWPT/7, TGC/3
- Where to expect BSM effects?
 - $\diamond \ h \rightarrow V f f$ already constrained from e.g. TGC
 - $\diamond~BR(h \rightarrow Z\gamma)$ can still hide large deviations

......

Gupta, Pomarol, Riva

 $h \rightarrow Z\gamma$ versus TGC

$\mathcal{E} \textit{ffective } \mathcal{T} \textit{heory } \mathcal{A} \textit{pproach } \mathcal{V} \textit{ersus } \mathcal{S} \textit{pecific } \mathcal{M} \textit{odels}$

• Effective Field Theory Approach

- * assume few basic principles (e.g. field content, SM gauge symmetries)
- * parametrize SM deviations by higher-dimensional operators

Advantage:	study large class of models
Disadvantage:	cannot account for effects from light particles in the loops,
	Higgs decays into non-SM particles
Solution:	study specific BSM models capturing these features

Higgs Boson Couplings

What Can We Learn From Coupling Measurements?

• The Standard Model Higgs Boson

 $\diamond~{\rm Test}$ relation $g_{hXX} \sim m_X$ predicted by Higgs mechanism

• Deviations from SM couplings — New Physics

- modified Higgs properties through mixing effects with other scalars or mixture between elementary and composite state in case of a composite particle (partial compositeness)
- modified Higgs properties through loop effects or effective low-energy operators (strong interaction)

 \mathcal{W} hat is the \mathcal{S} cale of \mathcal{N} ew \mathcal{P} hysics that can be \mathcal{P} robed?

• Expansion in higher dimensional operators to describe coupling deviation ~>>

$$g_{hXX} = g_{hXX}^{\mathsf{SM}}[1+\Delta] : \Delta = \mathcal{O}(v^2/\Lambda_*^2)$$

$\mathcal{E} \textit{ffective } \mathcal{N} \textit{ew } \mathcal{P} \textit{hysics } \mathcal{S} \textit{cales}$

$\mathcal{E} \textit{ffective } \mathcal{N} \textit{ew } \mathcal{P} \textit{hysics } \mathcal{S} \textit{cales}$

• Effective New Physics scales Λ_* extracted from coupling measurements

Λ_* [TeV]	LHC	HL-LHC	LC	HL-LC	HL-LHC + HL-LC
hWW	0.82	0.87	2.35	3.18	3.48
hZZ	0.74	0.87	2.75	3.48	3.89
htt	0.45	0.50	0.87	1.34	1.42
hbb	0.39	0.44	1.15	1.59	1.66
h au au	0.52	0.58	0.96	1.34	1.42
hgg	0.55	1.07	1.30	1.80	1.95
$h\gamma\gamma$	0.15	0.18	0.24	0.36	0.44

Loop-induced couplings to gluons and photons contain only the contribution of the contact terms

Strongly \mathcal{I} nteracting \mathcal{L} ight \mathcal{H} iggs ($S\mathcal{ILH}$)

• SILH Lagrangian: first term of an expansion in $\xi = v^2/f^2$ [f: typical scale of strong sector]

Giudice, Grojean, Pomarol, Rattazzi

Englert, Freitas, MMM, Plehn, Rauch, Spira, Walz

ξ	LHC	HL-LHC	LC	HL-LC	HL-LHC+HL-LC
universal	0.076	0.051	0.008	0.0052	0.0052
non-universal	0.068	0.015	0.0023	0.0019	0.0019
f [TeV]					
universal	0.89	1.09	2.82	3.41	3.41
non-universal	0.94	1.98	5.13	5.65	5.65

universal: fermions in spinorial representation non-universal: fermions in fundamental representation Agashe,Contino,Pomarol Contino,Da Rold,Pomarol

\mathcal{M} ixing \mathcal{E} ffects – 2HDM

- ρ -parameter exp close to 1 \rightsquigarrow extensions of Higgs sector by SU(2) singlet or doublet
- **2HDM potential** assuming CP-conservation and global \mathbb{Z}_2 discrete symmetry $[\phi_1 \rightarrow -\phi_1]$ Flores, Sher; Gunion et al; Lee; Branco et al; Gunion, Haber

$$\begin{split} V &= m_{11} |\phi_1|^2 + m_{22}^2 |\phi_2|^2 - m_{12}^2 (\phi_1^{\dagger} \phi_2 + \mathsf{h.c}) + \lambda_1 |\phi_1|^4 + \lambda_2 |\phi_2|^4 \\ &+ \lambda_3 |\phi_1|^2 |\phi_2|^2 + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 + \frac{1}{2} \lambda_5 [(\phi_1^{\dagger} \phi_2)^2 + \mathsf{h.c}] \,. \end{split}$$

• Couplings to fermions

- $\diamond~$ type I: all fermions couple only to $\phi_2;$
- ♦ type II: up-/down-type fermions couple to ϕ_2/ϕ_1 , respectively; → MSSM
- \diamond lepton-specific: quarks couple to ϕ_2 and charged leptons couple to ϕ_1 ;
- \diamond <u>flipped</u>: up-type quarks and leptons couple to ϕ_2 and down-type quarks couple to ϕ_1 .
- Higgs sector after EWSB CP-even neutral: h^0, H^0 , CP-odd neutral; A^0 , charged H^{\pm}

${\mathcal F}it$ to ${\mathcal C}ouplings$ of ${\mathcal A}ligned$ 2HDM

• Higgs Discovery

- \ast Higgs Signal compatible with SM-like Higgs Boson
- \ast Interpretation within numerous BSM physics models possible

• Composite Higgs Models

- \ast Example for strong EWSB dynamics
- \ast Compatible with LHC Data

• Effective Lagrangian Approach

- * Covers a large class of models
- \ast Identify operators relevant for Higgs physics
- \ast Complement by investigations in specific models

• Coupling Measurements

- \ast 2HDM compatible with data
- \ast LHC accuracy allows to probe scales of $\mathcal{O}(1~{\rm TeV})$

\mathcal{S} ummary

Exciting times and discoveries are ahead of us. With the LHC and HL-LHC we will have the excellent machine at hand to investigate Higgs and New Physics and gain insights in the true nature of the underlying theory

\mathcal{W} ork has only started!

$\mathcal{T}\mathsf{hank}\ \mathcal{Y}\mathsf{ou}\ \mathcal{F}\mathsf{or}\ \mathcal{Y}\mathsf{our}\ \mathcal{A}\mathsf{ttention}!$

