
Searches for Leptoquarks, Extra Dimensions, and Dark Matter

Lovedeep Kaur Saini Kansas State University for the CMS Collaboration @ LHCP 2014, NY

In this talk

Leptoquark searches

- ✓ First generation leptoquarks, LQ1
- Second generation leptoquarks,LQ2
- √ Third generation leptoquarks, LQ3

```
*EXO-11-028 (10.1103/PhysRevD.86.052013)
```

*EXO-12-042 (New)

*EXO-12-030 (New)

*EXO-12-032 (New)

Dark matter

- ✓ Mono-X
- ✓ Top quark pair
- ✓ Higgs-portal and so on

*EXO-12-048

*EXO-12-047 (New)

B2G-12-022

B2G-13-004

EXO-13-004 (New)

HIG-13-030

Extra dimensions

- ✓ ADD: Mono-X, di-leptons, di-jets and so on
- ✓ RSmodel
- Conclusions

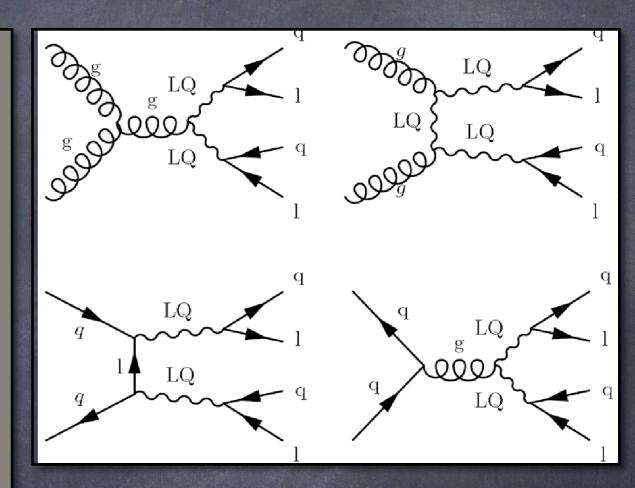
```
*EXO-12-048
```

*EXO-12-047

EXO-12-009 (10.1007/JHEP07(2013)178)

*EXO-12-031 (New)

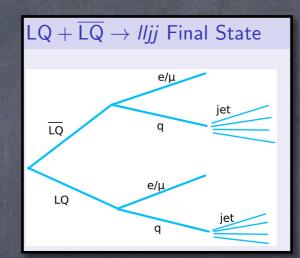
*EXO-12-027 (New)

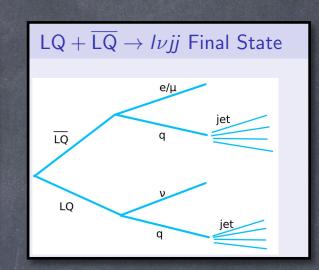

EXO-12-022

EXO-12-059

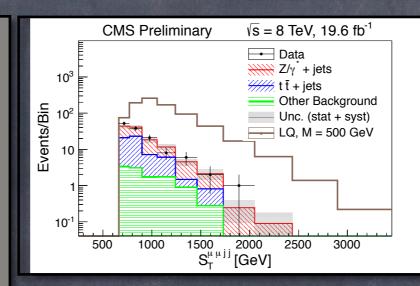
*only underlined analyses are covered in this talk

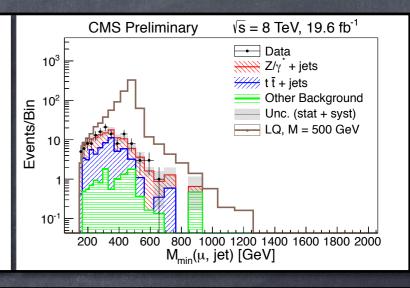
Leptoquarks - Introduction

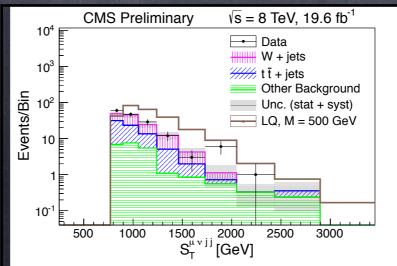

- Leptoquarks (LQ's) are hypothetical particles carrying both baryon and lepton numbers
- Predicted by many theories beyond the SM - GUTs, compositeness models...
- Couple to leptons and quarks of a single generation
- Dominant processes for LQ pair production at LHC gluon-gluon fusion & quark-antiquark annihilation

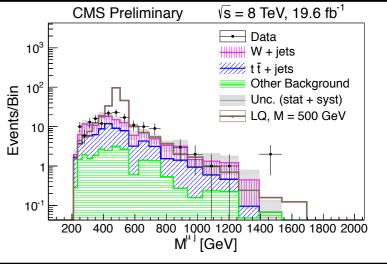


Model parameters				
$ m M_{LQ}$	$ m L_{LQ}$ LQ mass			
β	BR(LQ \rightarrow l ^{+/-} + q)			
$\lambda_{ ext{l-q-LQ}}$	l-q-LQ coupling			
LQs can be scalar* or vector				

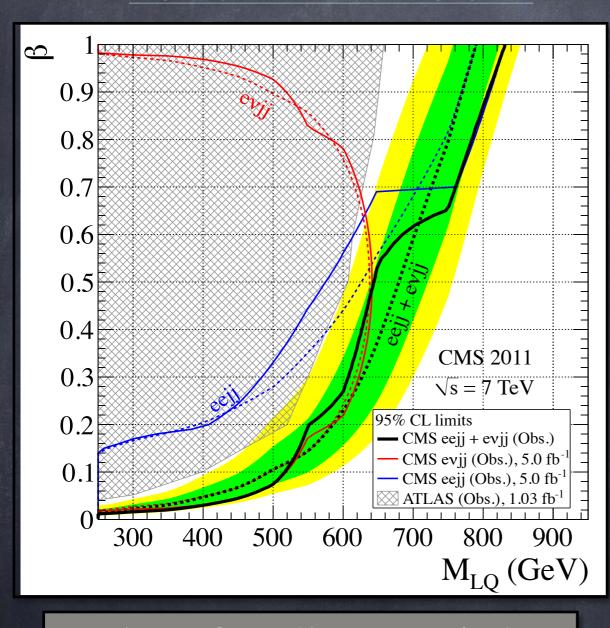

Search for LQ1, LQ2

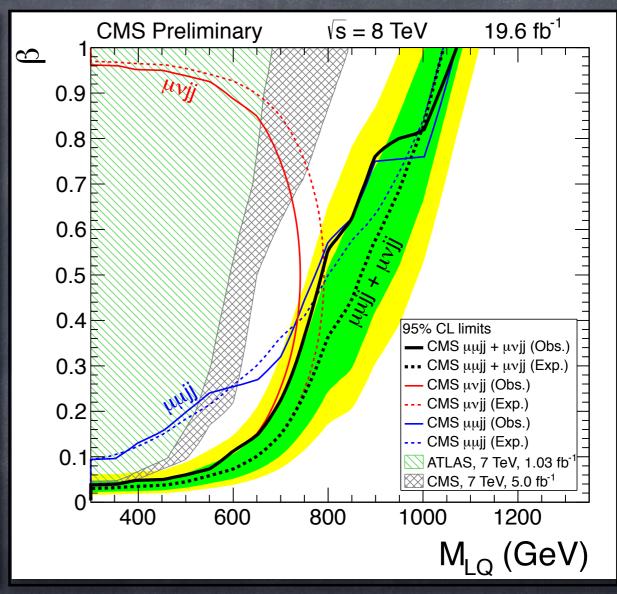

- Search for pair production of first & second generation LQ's in "di-lepton+di-jet" and "lepton+di-jet+missing Et (MET)" final states
- β = 1 for lljj final states
- $\beta = 0.5$ for $|\nu|$ jj final states





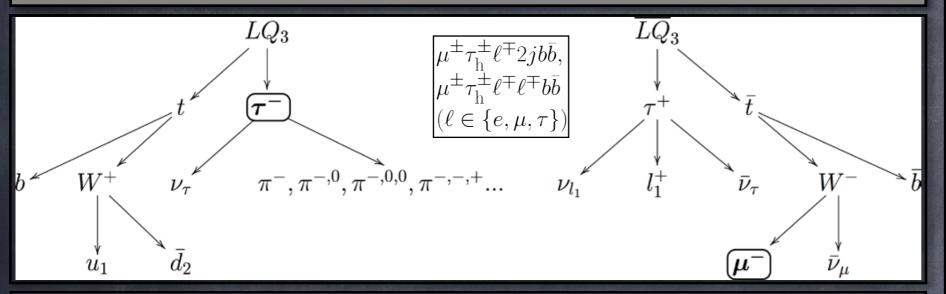
- For Iljj analyses:
 - ✓ M_{ll}, M_{lj}
 - $S_T^{ll} = p_T(l_1) + p_T(l_2) + p_T(j_1) + p_T(j_2)$
- For $|\nu|$ For
 - ✓ MET, M_{lj}
 - $S_T^{l\nu} = p_T(l) + MET + p_T$ $(j_1) + p_T(j_2)$


LQ1 - EXO-11-028 - 7TeV CMS data, 8TeV results about to come


LQ2, EXO-12-042 with full 8TeV CMS data

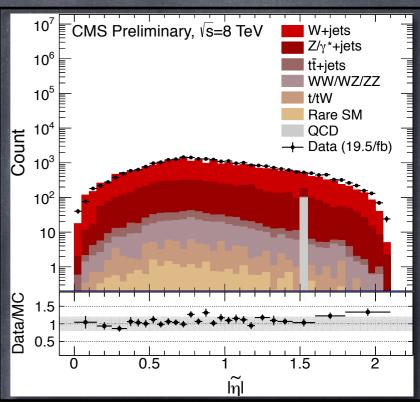
LQ1 & LQ2 Limits

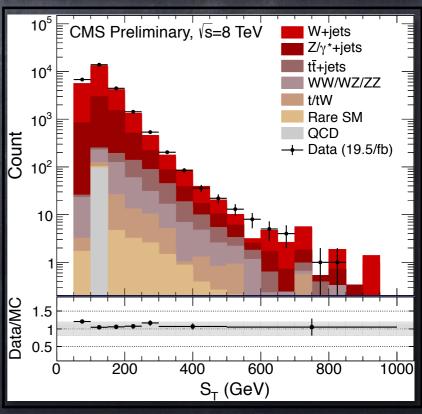
EXO-11-028 with full 7TeV CMS data



Scalar LQ1 with mass below 830 (640) GeV are excluded for β = 1 (0.5) at 95% CL

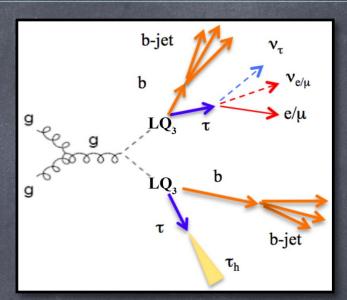
Scalar LQ2 with mass below 1070 (785) GeV are excluded for β = 1 (0.5) at 95% CL

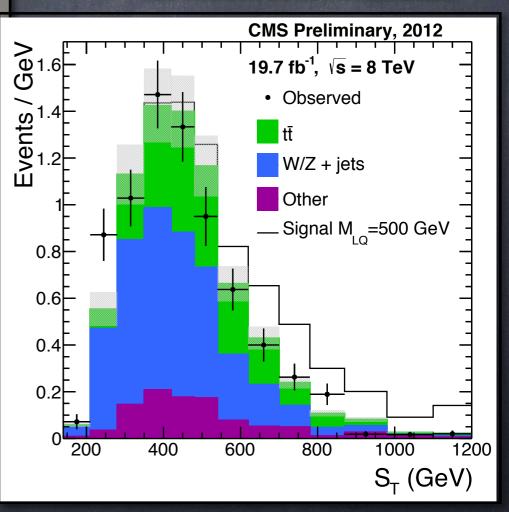

Search for LQ3 (\rightarrow t τ)


- Search for scalar LQ3 pair each decaying to top + au
- $Q = -1/3, \beta = 1$

- * Require same-sign (SS) $\mu \tau_h + X$ final state
- $S_T = p_T(l) + p_T(\tau) + p_T(j) + MET, S_T > 400 GeV$
- * N_{iets} >1, Z-veto, M_T (µ, MET) > 40 GeV
- * event centrality: average absolute η of all es, μ s, τ 's in the event.
 - ✓ LQ3 dominant in central region
 - √ search split in two channels (<0.9, >0.9)
- Final cuts on S_T and p_T (τ_h) are optimized for each LQ3 mass hypothesis.

EXO-12-030 with full 8TeV CMS data

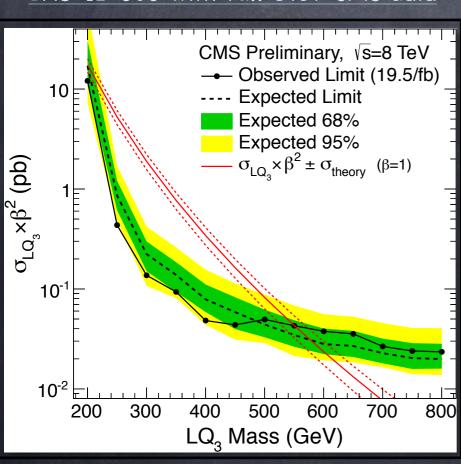


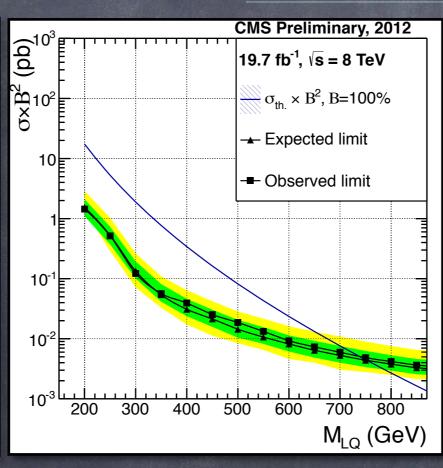

Search for LQ3 (\rightarrow b τ)

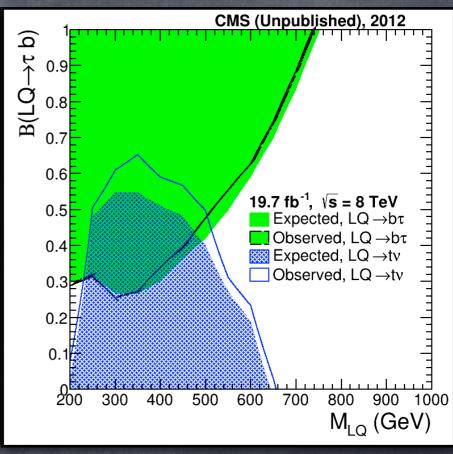
- st Search for scalar LQ pair each decaying to b and au
- * Q = 2/3 or 4/3, $\beta = 1$
- * One τ decay leptonically (τ_l) & other hadronically (τ_h)
- * Require two jets, at least one tagged as b-jet
- \sim M (τ_h , j) > 250 GeV
 - \checkmark minimize difference b/w mass of τ and one jet and the mass of the light lepton and the other jet
- * $S_T = p_T(l) + p_T(\tau_h) + p_T(j) + p_T(b-jet)$
- * S_T distribution used to extract limits

	$\mu \tau_{\rm h}$ Channel	eτ _h Channel		
tī (irreducible)	66.7 ± 12.6	105.6 ± 18.1		
Reducible	117.3 ± 18.9	147.8 ± 33.0		
$Z(\ell\ell/\tau\tau)$ +jets	$7.5 \pm 4.6 \pm 0.2$	$21.4 \pm 7.4 \pm 4.9$		
Single-t	$17.3 \pm 2.8 \pm 4.7$	$16.0 \pm 2.8 \pm 4.4$		
VV	$2.6 \pm 0.5 \pm 0.8$	$4.1 \pm 0.6 \pm 1.3$		
Total Bkg.	$211.4 \pm 5.4 \pm 23.4$	$294.9 \pm 7.9 \pm 39.1$		
Observed	216	289		
Signal (500 GeV)	$51.6 \pm 1.3 \pm 5.3$	$57.7 \pm 1.4 \pm 5.9$		
Signal (600 GeV)	$17.7 \pm 0.4 \pm 1.6$	$20.1 \pm 0.5 \pm 1.9$		
Signal (700 GeV)	$6.2 \pm 0.1 \pm 5.5$	$7.1 \pm 0.2 \pm 6.3$		
Signal (800 GeV)	$2.3 \pm 0.1 \pm 0.2$	$2.7 \pm 0.1 \pm 0.2$		

EXO-12-032 with full 8TeV CMS data

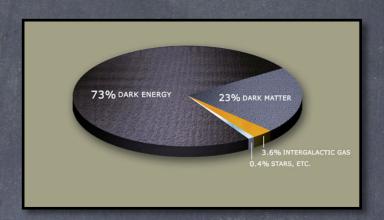




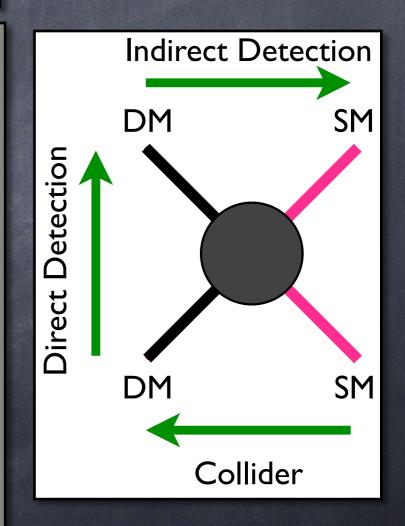

LQ3 Limits

EXO-12-030 with full 8TeV CMS data

EXO-12-032 with full 8TeV CMS data



-1/3 LQ3 decaying to top +tau with mass below 550 GeV excluded at 95% CL (582 GeV expected) LQ3 decaying to b+tau with mass below 740 GeV excluded at 95% CL (754 GeV expected)

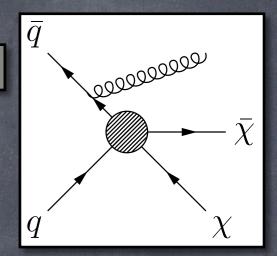

Limits for LQ3 search as a function of BR and mass are calculated too

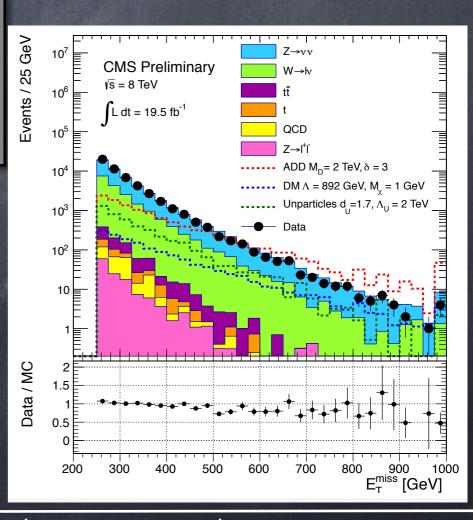
Dark Matter - Introduction

- Strong astrophysical evidences for the existence of DM
- No unambiguous direct detection so far
- Needs independent verifications from various astrophysical and non-astrophysical experiments.

- Colliders provide an alternative way of searching through DM production
- Signal characterstics:
 - ✓ large missing transverse energy (MET) from production of DM particles recoiling against X (=g,W/Z, γ)
- Effective theory approach (EFT) used
 - assuming interaction mediated by a heavy particle with mass M, scale of the process M* or Λ , and coupling g_{χ} and g_q $\Lambda = M_* = \frac{M}{\sqrt{g_{\chi}g_q}}$
 - express limits in terms of DM-nucleon cross-section, then compared with constraints from direct and indirect experiments.
 More on DM will be covered.

ered in plenary talk by N. Neumeister

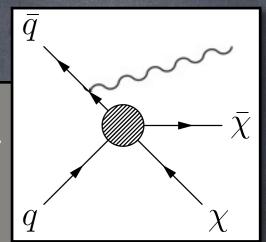

Mono-jet

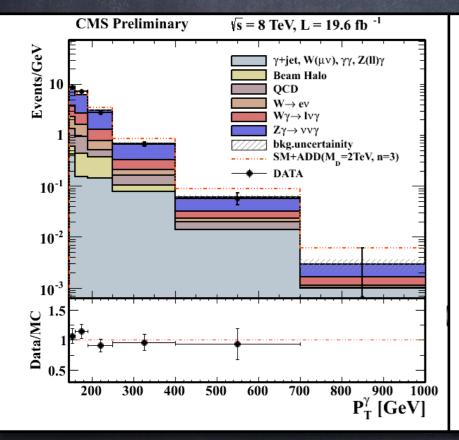

EXO-12-048 with full 8TeV CMS data

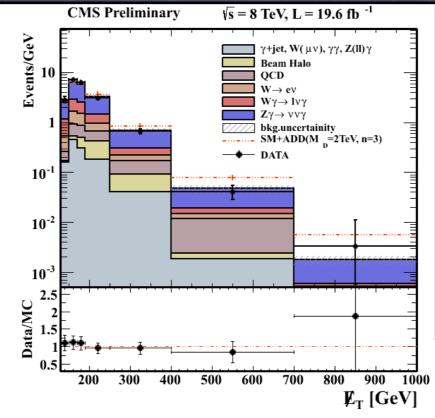
Large missing transverse energy recoiling against a high pT jet

- * One jet with pT > 110 GeV and allow an additional jet (pT > 30 GeV) provided Δ ϕ (j1, j2) < 2.5
- Veto event if has third jet with pT>30GeV
- Veto event if has isolated leptons with pT>10GeV (20GeV for taus)
- Several signal regions with increasing MET thresholds
 MET > 250, 300, 350, 400, 450, 500, 550 GeV
- MET > 400 GeV used for limit

$E_{\rm T}^{ m miss}$ (GeV) \rightarrow	> 250	> 300	> 350	> 400	> 450	> 500	> 550
$Z(\nu\nu)$ +jets	30600 ± 1493	12119 ± 640	5286 ± 323	2569 ± 188	1394 ± 127	671 ± 81	370 ± 58
W+jets	17625 ± 681	6042 ± 236	2457 ± 102	1044 ± 51	516 ± 31	269 ± 20	128 ± 13
t t	470 ± 235	175 ± 87.5	72 ± 36	32 ± 16	13 ± 6.5	6 ± 3.0	3 ± 1.5
$Z(\ell\ell)$ +jets	127 ± 63.5	43 ± 21.5	18 ± 9.0	8 ± 4.0	4 ± 2.0	2 ± 1.0	1 ± 0.5
Single t	156 ± 78.0	52 ± 26.0	20 ± 10.0	7 ± 3.5	2 ± 1.0	1 ± 0.5	0 ± 0
QCD Multijets	177 ± 88.5	76 ± 38.0	23 ± 11.5	3 ± 1.5	2 ± 1.0	1 ± 0.5	0 ± 0
Total SM	49154 ± 1663	18506 ± 690	7875 ± 341	3663 ± 196	1931 ± 131	949 ± 83	501 ± 59
Data	50419	19108	8056	3677	1772	894	508
Exp. upper limit	3580	1500	773	424	229	165	125
Obs. upper limit	4695	2035	882	434	157	135	131

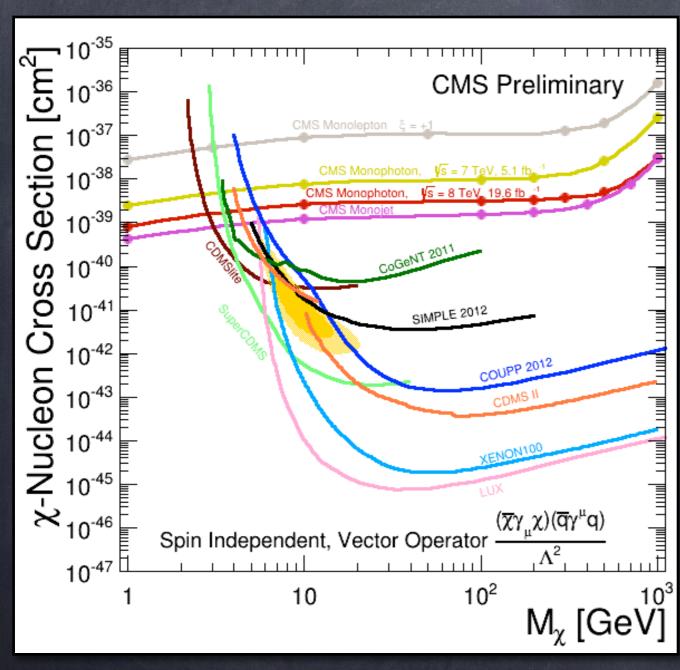


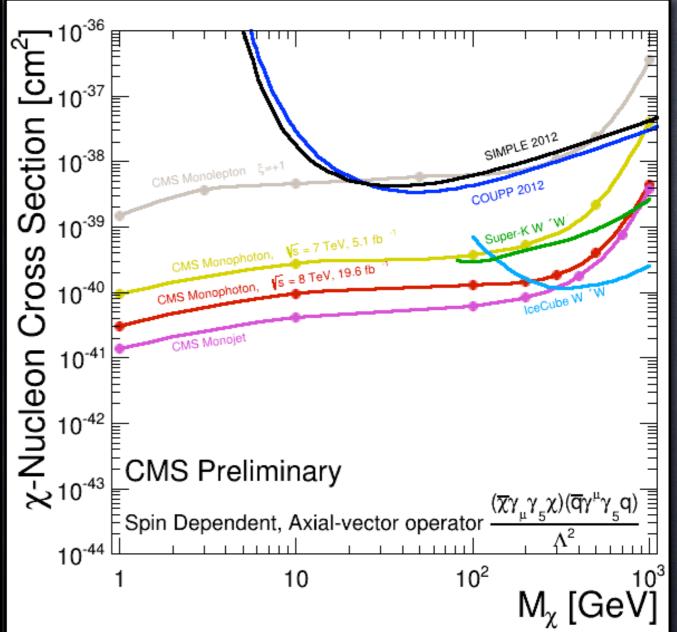

Mono-photon


EXO-12-047 with full 8TeV CMS data

Large missing transverse energy recoiling against a high pT γ

- \red One energetic photon with pT > 145 GeV within $|\eta|$ < 1.4442
- Veto events with leptons and significant hadronic activity
- MET > 140 GeV
- $\Delta \phi$ (photon,MET) > 2

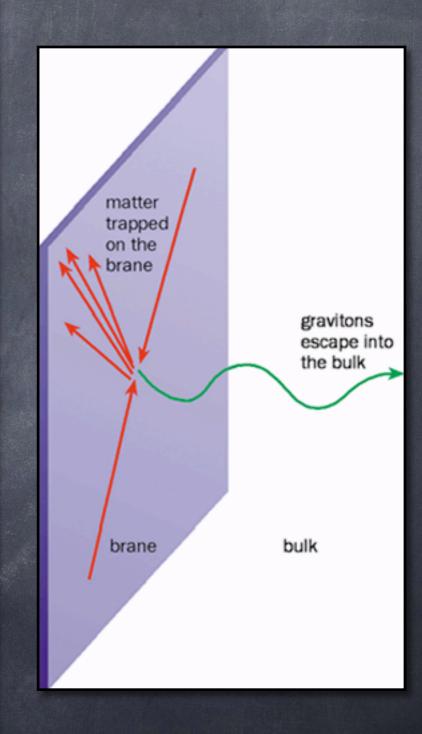



Process	Estimate		
$Z(\rightarrow u \bar{ u}) + \gamma$	344.8 ± 42.5		
$W(o \ell u) + \gamma$	102.5 ± 20.6		
W o e u	59.5 ± 5.5		
$jet \rightarrow \gamma fakes$	45.4 ± 13.9		
Beam halo	24.7 ± 6.2		
Others	35.7 ± 3.1		
Total background	612.6 ± 63.0		
Data	630.0		

more details - poster by Z. Demiragli

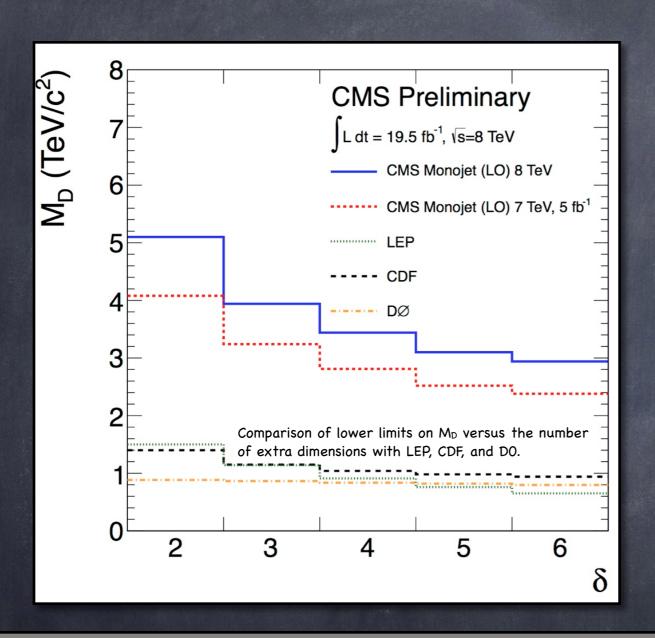
Mono-X (results)

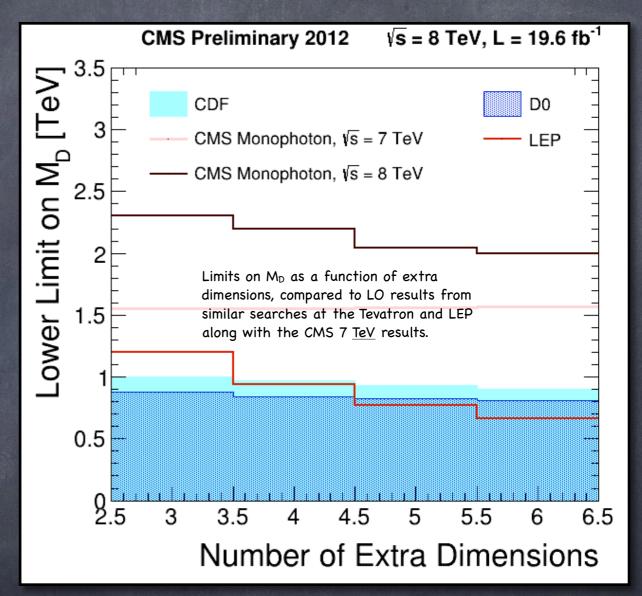
EXO-12-047 with full 8TeV CMS data



Extends the limits for M_χ < 3 GeV - which remained unexplored by direct detection experiments

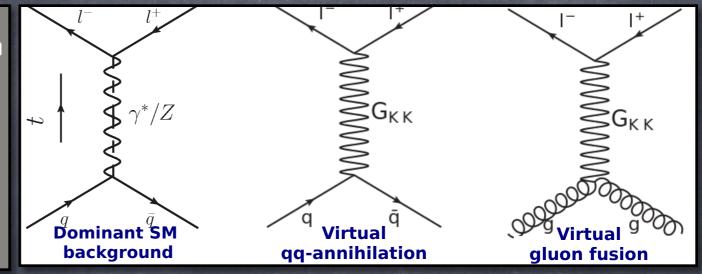
Stringent constraints by colliders over the whole mass range

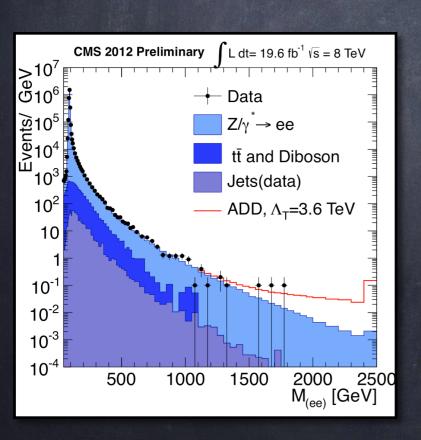

Extra Dimensions - Introduction

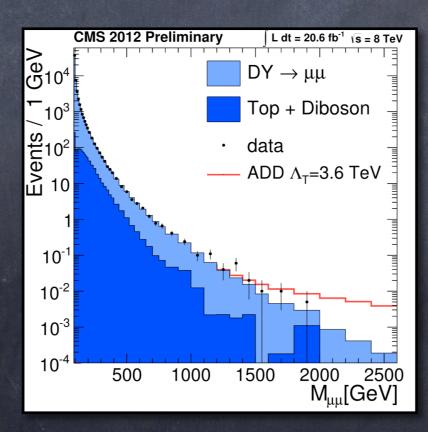

- Non-SUSY solutions to the hierarchy problem: extra dimensions (ED)
 - ✓ ADD: SM particles are confined to 4D subspace (brane) gravity propagates in additional dimensions (bulk). Its 4D projection is weak.
 - ✓ Signature:
 - mono-X from direct graviton production
 - enhanced high mass di-object events (virtual graviton exchange)

ADD with Mono-jet/photon

EXO-12-047/48 with full 8TeV CMS data




Limits on the order of 3-5 TeV, lower for larger number of EDs


ED with di-leptons

EXO-12-027, EXO-12-031 with full 8TeV CMS data

- Enhanced non-resonant dilepton production
- Best S/B ratio in high mass tail of dilepton spectrum
- Single bin counting experiment with Bayesian approach (Optimized lower mass threshold of Mll > 1.8 TeV)

Model Parameters:

GRW (Giudice, Rattazzi, Wells)

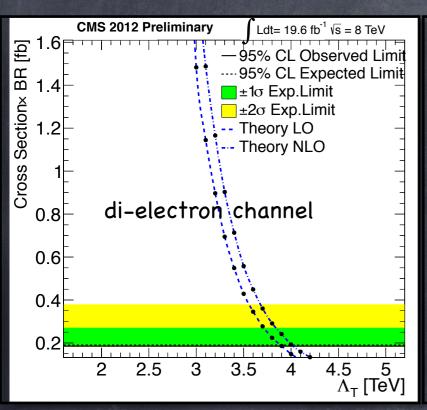
$$\Lambda_T = rac{8\pi\Gamma\left({}^{n_{ED}/2}
ight)M_D^{n_{ED}+2}}{2\pi^{n_{ED}/2}c_1\Lambda^{n_{ED}-2}}$$

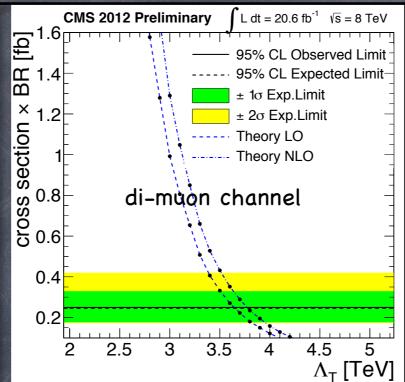
 Λ_T Controls phenomenology

 Λ Ultraviolet energy cutoff n_{ED} Number of extra dimensions

 M_D Reduced Planck scale

HLZ (Han, Lykken, Zhang)

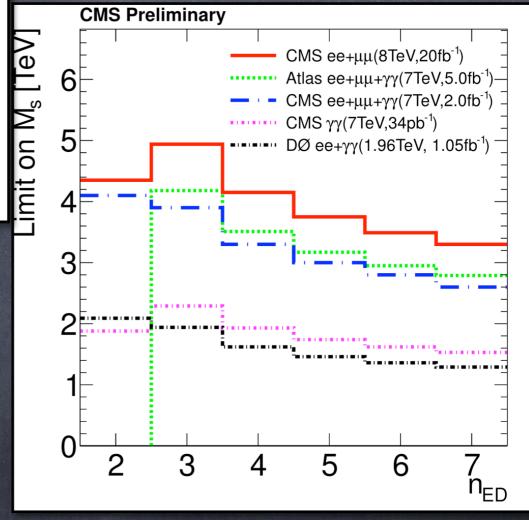

$$\Lambda_T^4 = \frac{n_{ED} - 2}{2} M_{s,HLZ}^4$$


 M_S String Scale

n_{ED} Number of extra dimensions

ED with di-leptons

EXO-12-027, EXO-12-031 with full 8TeV CMS date



Observed combined limit on $\sigma_{\rm s}$ <

0.12 fb at 95% CL

- Observed limits on cross-sections are translated to exclusion limits on ADD model parameters
- * Translating in GRW limit (combined ee & $\mu\mu$ limit) $\Lambda_{\rm T}$ > 4.15 TeV
- translate into HLZ by

$$\Lambda_T^4 = \frac{n_{ED} - 2}{2} M_{s,HLZ}^4$$

Conclusions

- Full 8TeV CMS data has been analyzed for most of the searches.
- Huge improvements on the known limits of LQ pair production, dark matter and extra dimensions, have been made. These results are the most stringent to date.
- Searches for all three LQ generations with different channels are shown (LQ1 8TeV results not public yet).
- Dark matter searches target lots of different ISR objects sensitivity to different operators in EFT enhanced -competitive with direct searches - especially these collider DM results are relevant at low DM mass and for spin-dependent interactions.
- Search for extra-dimensions in different possible signatures show no sign for its existence.
- But stay tuned more results are on the way 13 TeV collisions about to start!

