Searches for Leptoquarks, Extra Dimensions, and Dark Matter Lovedeep Kaur Saini Kansas State University for the CMS Collaboration @ LHCP 2014, NY ## In this talk ### Leptoquark searches - ✓ First generation leptoquarks, LQ1 - Second generation leptoquarks,LQ2 - √ Third generation leptoquarks, LQ3 ``` *EXO-11-028 (10.1103/PhysRevD.86.052013) ``` *EXO-12-042 (New) *EXO-12-030 (New) *EXO-12-032 (New) #### Dark matter - ✓ Mono-X - ✓ Top quark pair - ✓ Higgs-portal and so on #### *EXO-12-048 *EXO-12-047 (New) B2G-12-022 B2G-13-004 EXO-13-004 (New) HIG-13-030 #### Extra dimensions - ✓ ADD: Mono-X, di-leptons, di-jets and so on - ✓ RSmodel - Conclusions ``` *EXO-12-048 ``` *EXO-12-047 EXO-12-009 (10.1007/JHEP07(2013)178) *EXO-12-031 (New) *EXO-12-027 (New) EXO-12-022 EXO-12-059 *only underlined analyses are covered in this talk # Leptoquarks - Introduction - Leptoquarks (LQ's) are hypothetical particles carrying both baryon and lepton numbers - Predicted by many theories beyond the SM - GUTs, compositeness models... - Couple to leptons and quarks of a single generation - Dominant processes for LQ pair production at LHC gluon-gluon fusion & quark-antiquark annihilation | Model parameters | | | | | |------------------------------|---|--|--|--| | $ m M_{LQ}$ | $ m L_{LQ}$ LQ mass | | | | | β | BR(LQ \rightarrow l ^{+/-} + q) | | | | | $\lambda_{ ext{l-q-LQ}}$ | l-q-LQ coupling | | | | | LQs can be scalar* or vector | | | | | # Search for LQ1, LQ2 - Search for pair production of first & second generation LQ's in "di-lepton+di-jet" and "lepton+di-jet+missing Et (MET)" final states - β = 1 for lljj final states - $\beta = 0.5$ for $|\nu|$ jj final states - For Iljj analyses: - ✓ M_{ll}, M_{lj} - $S_T^{ll} = p_T(l_1) + p_T(l_2) + p_T(j_1) + p_T(j_2)$ - For $|\nu|$ - ✓ MET, M_{lj} - $S_T^{l\nu} = p_T(l) + MET + p_T$ $(j_1) + p_T(j_2)$ LQ1 - EXO-11-028 - 7TeV CMS data, 8TeV results about to come LQ2, EXO-12-042 with full 8TeV CMS data # LQ1 & LQ2 Limits EXO-11-028 with full 7TeV CMS data Scalar LQ1 with mass below 830 (640) GeV are excluded for β = 1 (0.5) at 95% CL Scalar LQ2 with mass below 1070 (785) GeV are excluded for β = 1 (0.5) at 95% CL # Search for LQ3 (\rightarrow t τ) - Search for scalar LQ3 pair each decaying to top + au - $Q = -1/3, \beta = 1$ - * Require same-sign (SS) $\mu \tau_h + X$ final state - $S_T = p_T(l) + p_T(\tau) + p_T(j) + MET, S_T > 400 GeV$ - * N_{iets} >1, Z-veto, M_T (µ, MET) > 40 GeV - * event centrality: average absolute η of all es, μ s, τ 's in the event. - ✓ LQ3 dominant in central region - √ search split in two channels (<0.9, >0.9) - Final cuts on S_T and p_T (τ_h) are optimized for each LQ3 mass hypothesis. #### EXO-12-030 with full 8TeV CMS data # Search for LQ3 (\rightarrow b τ) - st Search for scalar LQ pair each decaying to b and au - * Q = 2/3 or 4/3, $\beta = 1$ - * One τ decay leptonically (τ_l) & other hadronically (τ_h) - * Require two jets, at least one tagged as b-jet - \sim M (τ_h , j) > 250 GeV - \checkmark minimize difference b/w mass of τ and one jet and the mass of the light lepton and the other jet - * $S_T = p_T(l) + p_T(\tau_h) + p_T(j) + p_T(b-jet)$ - * S_T distribution used to extract limits | | $\mu \tau_{\rm h}$ Channel | eτ _h Channel | | | |------------------------------|----------------------------|--------------------------|--|--| | tī (irreducible) | 66.7 ± 12.6 | 105.6 ± 18.1 | | | | Reducible | 117.3 ± 18.9 | 147.8 ± 33.0 | | | | $Z(\ell\ell/\tau\tau)$ +jets | $7.5 \pm 4.6 \pm 0.2$ | $21.4 \pm 7.4 \pm 4.9$ | | | | Single-t | $17.3 \pm 2.8 \pm 4.7$ | $16.0 \pm 2.8 \pm 4.4$ | | | | VV | $2.6 \pm 0.5 \pm 0.8$ | $4.1 \pm 0.6 \pm 1.3$ | | | | Total Bkg. | $211.4 \pm 5.4 \pm 23.4$ | $294.9 \pm 7.9 \pm 39.1$ | | | | Observed | 216 | 289 | | | | Signal (500 GeV) | $51.6 \pm 1.3 \pm 5.3$ | $57.7 \pm 1.4 \pm 5.9$ | | | | Signal (600 GeV) | $17.7 \pm 0.4 \pm 1.6$ | $20.1 \pm 0.5 \pm 1.9$ | | | | Signal (700 GeV) | $6.2 \pm 0.1 \pm 5.5$ | $7.1 \pm 0.2 \pm 6.3$ | | | | Signal (800 GeV) | $2.3 \pm 0.1 \pm 0.2$ | $2.7 \pm 0.1 \pm 0.2$ | | | #### EXO-12-032 with full 8TeV CMS data # LQ3 Limits EXO-12-030 with full 8TeV CMS data EXO-12-032 with full 8TeV CMS data -1/3 LQ3 decaying to top +tau with mass below 550 GeV excluded at 95% CL (582 GeV expected) LQ3 decaying to b+tau with mass below 740 GeV excluded at 95% CL (754 GeV expected) Limits for LQ3 search as a function of BR and mass are calculated too ## Dark Matter - Introduction - Strong astrophysical evidences for the existence of DM - No unambiguous direct detection so far - Needs independent verifications from various astrophysical and non-astrophysical experiments. - Colliders provide an alternative way of searching through DM production - Signal characterstics: - ✓ large missing transverse energy (MET) from production of DM particles recoiling against X (=g,W/Z, γ) - Effective theory approach (EFT) used - assuming interaction mediated by a heavy particle with mass M, scale of the process M* or Λ , and coupling g_{χ} and g_q $\Lambda = M_* = \frac{M}{\sqrt{g_{\chi}g_q}}$ - express limits in terms of DM-nucleon cross-section, then compared with constraints from direct and indirect experiments. More on DM will be covered. ered in plenary talk by N. Neumeister # Mono-jet EXO-12-048 with full 8TeV CMS data Large missing transverse energy recoiling against a high pT jet - * One jet with pT > 110 GeV and allow an additional jet (pT > 30 GeV) provided Δ ϕ (j1, j2) < 2.5 - Veto event if has third jet with pT>30GeV - Veto event if has isolated leptons with pT>10GeV (20GeV for taus) - Several signal regions with increasing MET thresholds MET > 250, 300, 350, 400, 450, 500, 550 GeV - MET > 400 GeV used for limit | $E_{\rm T}^{ m miss}$ (GeV) \rightarrow | > 250 | > 300 | > 350 | > 400 | > 450 | > 500 | > 550 | |---|------------------|-----------------|----------------|----------------|----------------|--------------|--------------| | $Z(\nu\nu)$ +jets | 30600 ± 1493 | 12119 ± 640 | 5286 ± 323 | 2569 ± 188 | 1394 ± 127 | 671 ± 81 | 370 ± 58 | | W+jets | 17625 ± 681 | 6042 ± 236 | 2457 ± 102 | 1044 ± 51 | 516 ± 31 | 269 ± 20 | 128 ± 13 | | t t | 470 ± 235 | 175 ± 87.5 | 72 ± 36 | 32 ± 16 | 13 ± 6.5 | 6 ± 3.0 | 3 ± 1.5 | | $Z(\ell\ell)$ +jets | 127 ± 63.5 | 43 ± 21.5 | 18 ± 9.0 | 8 ± 4.0 | 4 ± 2.0 | 2 ± 1.0 | 1 ± 0.5 | | Single t | 156 ± 78.0 | 52 ± 26.0 | 20 ± 10.0 | 7 ± 3.5 | 2 ± 1.0 | 1 ± 0.5 | 0 ± 0 | | QCD Multijets | 177 ± 88.5 | 76 ± 38.0 | 23 ± 11.5 | 3 ± 1.5 | 2 ± 1.0 | 1 ± 0.5 | 0 ± 0 | | Total SM | 49154 ± 1663 | 18506 ± 690 | 7875 ± 341 | 3663 ± 196 | 1931 ± 131 | 949 ± 83 | 501 ± 59 | | Data | 50419 | 19108 | 8056 | 3677 | 1772 | 894 | 508 | | Exp. upper limit | 3580 | 1500 | 773 | 424 | 229 | 165 | 125 | | Obs. upper limit | 4695 | 2035 | 882 | 434 | 157 | 135 | 131 | | | | | | | | | | # Mono-photon EXO-12-047 with full 8TeV CMS data Large missing transverse energy recoiling against a high pT γ - \red One energetic photon with pT > 145 GeV within $|\eta|$ < 1.4442 - Veto events with leptons and significant hadronic activity - MET > 140 GeV - $\Delta \phi$ (photon,MET) > 2 | Process | Estimate | | | |---------------------------------------|------------------|--|--| | $Z(\rightarrow u \bar{ u}) + \gamma$ | 344.8 ± 42.5 | | | | $W(o \ell u) + \gamma$ | 102.5 ± 20.6 | | | | W o e u | 59.5 ± 5.5 | | | | $jet \rightarrow \gamma fakes$ | 45.4 ± 13.9 | | | | Beam halo | 24.7 ± 6.2 | | | | Others | 35.7 ± 3.1 | | | | Total background | 612.6 ± 63.0 | | | | Data | 630.0 | | | more details - poster by Z. Demiragli # Mono-X (results) EXO-12-047 with full 8TeV CMS data Extends the limits for M_χ < 3 GeV - which remained unexplored by direct detection experiments Stringent constraints by colliders over the whole mass range # Extra Dimensions - Introduction - Non-SUSY solutions to the hierarchy problem: extra dimensions (ED) - ✓ ADD: SM particles are confined to 4D subspace (brane) gravity propagates in additional dimensions (bulk). Its 4D projection is weak. - ✓ Signature: - mono-X from direct graviton production - enhanced high mass di-object events (virtual graviton exchange) # ADD with Mono-jet/photon EXO-12-047/48 with full 8TeV CMS data Limits on the order of 3-5 TeV, lower for larger number of EDs # ED with di-leptons EXO-12-027, EXO-12-031 with full 8TeV CMS data - Enhanced non-resonant dilepton production - Best S/B ratio in high mass tail of dilepton spectrum - Single bin counting experiment with Bayesian approach (Optimized lower mass threshold of Mll > 1.8 TeV) #### Model Parameters: GRW (Giudice, Rattazzi, Wells) $$\Lambda_T = rac{8\pi\Gamma\left({}^{n_{ED}/2} ight)M_D^{n_{ED}+2}}{2\pi^{n_{ED}/2}c_1\Lambda^{n_{ED}-2}}$$ Λ_T Controls phenomenology Λ Ultraviolet energy cutoff n_{ED} Number of extra dimensions M_D Reduced Planck scale HLZ (Han, Lykken, Zhang) $$\Lambda_T^4 = \frac{n_{ED} - 2}{2} M_{s,HLZ}^4$$ M_S String Scale *n_{ED}* Number of extra dimensions # ED with di-leptons EXO-12-027, EXO-12-031 with full 8TeV CMS date # Observed combined limit on $\sigma_{\rm s}$ < #### 0.12 fb at 95% CL - Observed limits on cross-sections are translated to exclusion limits on ADD model parameters - * Translating in GRW limit (combined ee & $\mu\mu$ limit) $\Lambda_{\rm T}$ > 4.15 TeV - translate into HLZ by $$\Lambda_T^4 = \frac{n_{ED} - 2}{2} M_{s,HLZ}^4$$ ## Conclusions - Full 8TeV CMS data has been analyzed for most of the searches. - Huge improvements on the known limits of LQ pair production, dark matter and extra dimensions, have been made. These results are the most stringent to date. - Searches for all three LQ generations with different channels are shown (LQ1 8TeV results not public yet). - Dark matter searches target lots of different ISR objects sensitivity to different operators in EFT enhanced -competitive with direct searches - especially these collider DM results are relevant at low DM mass and for spin-dependent interactions. - Search for extra-dimensions in different possible signatures show no sign for its existence. - But stay tuned more results are on the way 13 TeV collisions about to start!