ATLAS searches for heavy resonances

David Adams
BNL
On behalf of the ATLAS collaboration
June 5, 2014
Introduction

ATLAS is carrying out many BSM searches
 - Great to have found the Higgs, but is there more?
 - Many ideas and models

Resonances are an obvious place to look
 - Appear in many models
 - Often dramatic signal on a mundane background
 - Sidebands confirm understanding of Standard Model and detector
 - Figure shows example
 - SSM $Z' \rightarrow ee$
 - Details later

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example_graph.png}
\caption{Example graph showing ATLAS search for $Z' \rightarrow ee$.}
\end{figure}
ATLAS detector

ATLAS 2012
8 TeV \(pp \)
\[L_{\text{int}} = 20 \text{ fb}^{-1} \]
Searches

The following resonance searches are described here

- Dilepton: $Z' \rightarrow ll$ and other interpretations
- $W' \rightarrow l\nu$
- $W' \rightarrow WZ \rightarrow lll\nu$
- $G^* \rightarrow HH \rightarrow bbbb$
- QBH $\rightarrow lj$ (QBH = quantum black hole)

For more, see the ATLAS public results page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic
Dilepton search

Dilepton search results were recently submitted for publication

- Preliminary $Z' \rightarrow ll$ results were released in March 2013
- New results include many models

Search spectra below

- Left is ee, right is $\mu\mu$
- Search variable is the dilepton mass

![Search spectra](image-url)
Dilepton limits

Statistical analysis
- Spectra show no evidence for BSM resonance
- Bayesian analysis done for a fine-grained scan over m_{ll}
- For a variety of signals Z' and Z^*
 - Classic SSM Z'
 - E_6 models Z_χ and Z_ψ
 - Weaker and narrower than Z'
 - Z^* - tensor coupling
 - SSM $m_{Z'} > 2.9$ TeV

G^* (first KK graviton excitation)
- Limit on coupling vs. mass
- $M_{G^*} > 2.7$ TeV for $\frac{k}{M_{Pl}} > 0.1$
QBH (quantum black hole)
 • Low-scale quantum gravity BH can decay to two objects
 • See later discussion
 • Limits shown as function of threshold mass
 o For both RS and ADD ($n = 6$)

Minimal Walking Technicolor
 • Model is a composite Higgs consistent with present LHC observations
 • Techni-meson decay to ll
 • Limits shown as function of coupling and axial-vector mass
$W' \rightarrow l\nu$ search

Lepton + MET resonance search

- **ATLAS-CONF-2014-017**
- Signal is a single high-pT lepton (e or μ)
 - Separate search for each channel
 - Large missing transverse momentum (MET)
- Search performed in transverse mass
 - $m_T = \sqrt{2 p_T E_T^{miss} (1 - \cos \varphi_{l\nu})}$
$W'\rightarrow l\nu$ limits

Statistical analysis

- BG estimated from Monte Carlo
- Signal from MC and measurements of electron and muon efficiencies
 - Signal efficiency: 20-40%
 - SSM W'
 - Excited chiral boson
- Single-bin Bayesian analysis
 - Variable threshold on m_T
- No evidence of signal
- Limits shown in plots
 - Combination of electron and muon channels
 - $m_{W'} > 3.3$ TeV

D. Adams, BNL

ATLAS searches for heavy resonances

LHCP

June 5, 2014
Diboson resonances

Many models predict diboson resonances

• GUTs, Little Higgs, Technicolor, composite Higgs, extra dimensions, ...

• SSM Z’ and W’ are often used as benchmarks
 o Also graviton

• ATLAS is carrying out searches in many channels
 o WZ, WW, ZZ, HH, ...

• And there are many decay modes for the bosons
 o W→lv, Z→ll, H→bb, ...

• Report here on two recent results
 o W’→WZ→lllv
 o X→HH→bbbb
W'→WZ→lllv search

Fully-leptonic search for W'

- **ATLAS-CONF-2014-015**
- Lepton = electron or muon
- Z from opposite-sign, same-flavor leptons
 - |m_\ell - m_Z| < 20 GeV
- W from lepton and MET (assumed from neutrino)
 - Neutrino p_z determined from m_{l\nu} = m_W
 - Smallest real or real part of imaginary solution retained
- Search in m_{WZ} in two distinct signal regions
 - Δφ(l, MET) < 1.5 for high mass
 - Inverse for low mass
 - Search boundary at 250 GeV
Statistical analysis

- BG taken from Monte Carlo
- Signal from MC and data-driven estimates of lepton efficiencies and fake rates
 - Signal efficiency shown in plot (6-35%)
- No evidence for signal
- CL_S evaluation of limits
 - See figure
 - $m_{W'} > 1.5$ TeV
- Limits also set for HVT (heavy vector triplets) with different strength parameters

ATLAS simulation preliminary

ATLAS preliminary

\[L = 20.3 \text{ fb}^{-1} \]

Expected 95% CL Limit

- 95% CL $\pm 1\sigma$
- 95% CL $\pm 2\sigma$

Observed Limit

- EGM W'
- HVT A($g=1$)
- HVT A($g=3$)
- HVT B($g=3$)
Di-Higgs search

- With Higgs boson observation, we can now search for decays to Higgs
- Here search for G^* decay to a narrow HH resonance
- Both Higgs decay to bb
- Signal is four b-jets where each of two distinct bb pairs has mass close to 125 GeV
 - Plus veto of events where extra jets look like top
- Remaining BG is 90% multijet
 - Normalized using control region (i.e. not HH or ZH) and comparing with same for 2-tag
- Lower plots shows the search spectrum after selection
$G^* \rightarrow HH \rightarrow bbb$ limits

Statistical analysis

- Search range 0.5 - 1.5 TeV
- No evidence for signal
- Limits obtained with CL_s
- Signal (first KK excitation of graviton) shape and normalization taken from simulation
- Signal efficiency: 2-6%
- Plot at right shows cross section limits
- Benchmark excluded for $590 < m_{G^*} < 710$ GeV
- **ATLAS-CONF-2014-005**
Quantum black holes (QBHs)
• Predicted in low-scale quantum gravity theories
• With mass near m_D, QBH may decay to two particles
 o Unlike semiclassical BHs which decay to many particles
 o $m_D = $ scale of quantum gravity

QBH search
• Search in the lepton-jet (lj) channel where BG is small
 o lepton = electron or muon
• Figures show m_{lj}
 o Lepton + highest-p_T jet
 o Top is electron channel
 o Bottom is muon channel
QBH→lj limits

Statistical analysis

- BG shapes taken from simulation with normalization obtained from control regions and MET spectra
- Signal depends on assumed threshold mass M_{th}
 - Modeling approximations are valid above this value
 - Taken to be equivalent to the inverse gravitational radius
 - The number of signal events is obtained by counting those with m_{lj} above a threshold close to M_{th}
 - Difference accounts for detector resolution
- No evidence for signal
- Limits evaluated using CL$_S$
 - Figure at right
 - For n= 6 ADD extra dimensions
 - $M_{th} > 5.3$ TeV
- PRL 112, 091804 (2014)
- Similar search for gamma+jet final state published last year
 - PLB 728, 562 (2013)
Summary and conclusions

ATLAS searches for heavy resonances

• Part of a wide-ranging search for physics beyond the Standard Model
• A few recent searches are reported here
 o These and many earlier searches and other ATLAS results available from ATLAS public results page
 o Expect more results on 2012 data in the coming months
• So far the standard model looks pretty good
 o No BSM observations yet
 o But many limits on BSM signals
 o Chart on following page summarizes these using benchmark signals
 – See papers and public notes for full kinematic limits

Future

• These and other resonance searches will be extended significantly in the upcoming and future runs at the LHC
• ATLAS-PHYS-PUB-2013-003 concludes, in the absence of a signal, the limit for the SSM Z' increases to $m > 7.8$ TeV for 3000 fb$^{-1}$ at 14 TeV
ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

\[\mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \]

\(\sqrt{s} = 7, 8 \text{ TeV} \)

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell, \gamma)</th>
<th>Jets</th>
<th>(E_{\text{miss}}^T)</th>
<th>(\mathcal{L} dt \text{[fb}^{-1}])</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD GKK + (g/q)</td>
<td>(-1 2 j)</td>
<td>Yes</td>
<td>4.7</td>
<td>(M_{\text{GKK}})</td>
<td>4.37 TeV</td>
<td>1210.4491</td>
</tr>
<tr>
<td>ADD non-resonant (\ell \gamma)</td>
<td>(2 \text{ or } 2 \text{e, } \mu)</td>
<td>(-)</td>
<td>4.7</td>
<td>(M_{\text{GKK}})</td>
<td>4.18 TeV</td>
<td>1211.1150</td>
</tr>
<tr>
<td>ADD QBH (\rightarrow \ell \ell)</td>
<td>(1 e, \mu)</td>
<td>1 j</td>
<td>20.3</td>
<td>(M_{\text{GKK}})</td>
<td>5.2 TeV</td>
<td>1311.2006</td>
</tr>
<tr>
<td>ADD BH High (N_{\mu})</td>
<td>(2 \mu) (SS)</td>
<td>(-)</td>
<td>20.3</td>
<td>(M_{\text{GKK}})</td>
<td>5.7 TeV</td>
<td>1308.4075</td>
</tr>
<tr>
<td>ADD BH High (\Sigma, \rho T)</td>
<td>(\geq 1 e, \mu \geq 2 j)</td>
<td>(-)</td>
<td>20.3</td>
<td>(M_{\text{GKK}})</td>
<td>6.2 TeV</td>
<td>1308.4075</td>
</tr>
<tr>
<td>RSL GKK (\rightarrow t \ell)</td>
<td>(2 e, \mu)</td>
<td>(-)</td>
<td>20.3</td>
<td>(M_{\text{GKK}})</td>
<td>2.47 TeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>RSL GKK (\rightarrow Z \ell \ell)</td>
<td>(2 \text{ or } 4 e, \mu)</td>
<td>(2 j \text{ or } -)</td>
<td>1.0</td>
<td>(M_{\text{GKK}})</td>
<td>845 GeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>RSL GKK (\rightarrow WW \ell \ell)</td>
<td>(2 e, \mu)</td>
<td>(-)</td>
<td>4.7</td>
<td>(M_{\text{GKK}})</td>
<td>1.23 TeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>Bulk BS GKK (\rightarrow HH \rightarrow bb\bar{b})</td>
<td>(-)</td>
<td>4 b</td>
<td>19.5</td>
<td>(M_{\text{GKK}})</td>
<td>590-710 GeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>Bulk BS GKK (\rightarrow tt)</td>
<td>(1 e, \mu \geq 1 b, \geq 1 j)</td>
<td>Yes</td>
<td>14.3</td>
<td>(M_{\text{GKK}})</td>
<td>0.5-2.0 TeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>S1/2 (z_2) ED</td>
<td>(2 e, \mu)</td>
<td>(-)</td>
<td>5.0</td>
<td>(M_{\text{GKK}} = R^{-1})</td>
<td>4.71 TeV</td>
<td>1293.0718</td>
</tr>
<tr>
<td>UED</td>
<td>(2 \gamma)</td>
<td>(-)</td>
<td>4.8</td>
<td>(\text{Compact}, \text{scale } R^{-1})</td>
<td>1.41 TeV</td>
<td>1293.0718</td>
</tr>
</tbody>
</table>

Gauge bosons

	\(SSM Z' \rightarrow \ell\ell\)	\(2 e, \mu\)	\(-\)	20.3	\(Z'\) mass	2.86 TeV	ATLAS-CONF-2013-017	
	\(SSM Z' \rightarrow \tau\tau\)	\(2 \tau\)	\(-\)	19.5	\(Z'\) mass	1.9 TeV	ATLAS-CONF-2013-026	
	\(SSM W' \rightarrow \ell\ell\)	\(1 e, \mu\)	\(-\)	20.3	\(W'\) mass	3.28 TeV	ATLAS-CONF-2013-017	
	\(EGM W' \rightarrow WZ \rightarrow \ell\ell\ell'\)	\(3 e, \mu\)	\(-\)	20.3	\(W'\) mass	1.52 TeV	ATLAS-CONF-2013-015	
	\(LHS W'_{Z} \rightarrow t\bar{b}\)	\(1 e, \mu\)	2 b, 0-1 j	Yes	14.3	\(W'\) mass	1.81 TeV	ATLAS-CONF-2013-050

	\(Cl \)	qqq	\(-2 j\)	4.8	\(\Lambda\)	7.6 TeV	\(\eta = +1\)	1210.1178			
	\(Cl \)	q\ell\ell	2 e, \(\mu\) (SS) \(\geq 1 b, \geq 1 j\)	Yes	14.3	\(\Lambda\)	13.9 TeV	\(\eta_{\ell\ell} = -1\)	1211.1150		
	\(Cl \)	rtt	\(2 e, \mu, \mu\)	\(-\)	5.0	\(\Lambda\)	3.3 TeV	\(\eta	= 1\)	ATLAS-CONF-2013-051

| | \(D N J \) | D5 operator | \(-1 2 j\) | Yes | 10.5 | \(M_{\chi}\) | 731 GeV | ATLAS-CONF-2012-147 |
| | \(D N J \) | D9 operator | \(-1 J, \leq 1 j\) | Yes | 20.3 | \(M_{\chi}\) | 2.4 TeV | ATLAS-CONF-2012-147 |

	\(L Q \)	\(L Q 1\text{st} \text{gen}\)	\(2 e\)	\(\geq 2 j\)	1.0	\(L Q \) mass	660 GeV	1112.4628
	\(L Q \)	\(L Q 2\text{nd} \text{gen}\)	\(2 \mu\)	\(\geq 2 j\)	1.0	\(L Q \) mass	685 GeV	1203.3172
	\(L Q \)	\(L Q 3\text{rd} \text{gen}\)	\(1 e, \mu, 1 r, 1 b, 1 j\)	\(-\)	4.7	\(L Q \) mass	534 GeV	1303.0560

Heavy quarks

	\(V Q Q \)	\(\rightarrow T T \rightarrow H t + X\)	\(1 e, \mu \geq 2 b, \geq 4 j\)	Yes	14.3	\(T\) mass	790 GeV	ATLAS-CONF-2013-018
	\(V Q Q \)	\(\rightarrow W W + X\)	\(1 e, \mu \geq 1 b, \geq 3 j\)	Yes	14.3	\(T\) mass	676 GeV	ATLAS-CONF-2013-060
	\(V Q Q \)	\(\rightarrow Zb + X\)	\(2 e, \mu \geq 2 b\)	\(-\)	14.3	\(B\) mass	725 GeV	ATLAS-CONF-2013-056
	\(V Q Q \)	\(\rightarrow BB + X\)	\(2 e, \mu, (SS) \geq 1 b, \geq 1 j\)	Yes	14.3	\(B\) mass	720 GeV	ATLAS-CONF-2013-051

Excited lepton

| | \(L R S M \) | Majorana | \(1 e, \mu\) | \(2 j\) | \(-2.1\) | \(N^0\) mass | 1.5 TeV | 1203.3172 |

Other

| | \(L R S M \) | Majorana | \(2 e, \mu\) | \(2 j\) | \(-5.8\) | \(N^0\) mass | 245 GeV | 1203.3172 |
| | \(H g gl\) trapezoid | \(H^0 \rightarrow \ell\ell\) | \(2 e, \mu, (SS)\) | \(-\) | 4.7 | \(H^0\) mass | 409 GeV | 1207.6411 |

Only a selection of the available mass limits on new states or phenomena is shown.

D. Adams, BNL

ATLAS searches for heavy resonances

LHCP

June 5, 2014

18