ATLAS searches for heavy resonances

Large Hadron Collider Physics

David Adams BNL On behalf of the ATLAS collaboration June 5, 2014

Introduction

ATLAS is carrying out many BSM searches

- Great to have found the Higgs, but is there more?
- Many ideas and models

Resonances are an obvious place to look

- Appear in many models
- Often dramatic signal on a mundane background
- Sidebands confirm understanding of Standard Model and detector
- Figure shows example
 - ∘ SSM Z´*→ee*
 - Details later

ATLAS detector

ATLAS 2012 8 TeV *pp* $L_{\rm int} = 20 \; {\rm fb}^{-1}$

Recorded Luminosity [pb ⁻¹/0.1]

140

120

100

80

60

40

20

0^L 0

5

Searches

The following resonance searches are described here

- Dilepton: $Z' \rightarrow ll$ and other interpretations
- $W' \rightarrow lv$
- $W' \rightarrow WZ \rightarrow lllv$
- $G^* \rightarrow HH \rightarrow bbbb$
- QBH $\rightarrow lj$ (QBH = quantum black hole)

For more, see the ATLAS public results page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Dilepton search

Dilepton search results were recently submitted for publication

- Submitted to Phys. Rev. D (<u>arXiv:1405.4123</u>)
- Preliminary $Z' \rightarrow ll$ results were released in March 2013
- New results include many models

Search spectra below

- Left is *ee*, right is μμ
- Search variable is the dilepton mass

Dilepton limits

Statistical analysis

- Spectra show no evidence for BSM resonance
- Bayesian analysis done for a fine-grained scan over m_{ll}
- For a variety of signals

Z' and Z^*

- Classic SSM Z´
- E_6 models Z_{χ} and Z_{ψ}
 - Weaker and narrower than Z'
- Z* tensor coupling
- SSM *m_{z'}* > 2.9 TeV
- G* (first KK graviton excitation)
 - Limit on coupling vs. mass

•
$$M_{G^*} > 2.7 \text{ TeV}$$
 for $\frac{k}{\overline{M}_{Pl}} > 0.1$

Dilepton limits (2)

QBH (quantum black hole)

- Low-scale quantum gravity BH can decay to two objects
- See later discussion
- Limits shown as function of threshold mass
 - For both RS and ADD (n = 6)

Minimal Walking Technicolor

- Model is a composite Higgs consistent with present LHC observations
- Techni-meson decay to *ll*
- Limits shown as function of coupling and axial-vector mass

LHCP

June 5, 2014

$W' \rightarrow lv$ search

Lepton + MET resonance search

- <u>ATLAS-CONF-2014-017</u>
- Signal is a single high-pT lepton (e or μ)
 - Separate search for each channel
 - Large missing transverse momentum (MET)
- Search performed in transverse mass

$$\circ \quad m_{\rm T} = \sqrt{2 p_T E_T^{miss} (1 - \cos \varphi_{lv})}$$

$W' \rightarrow lv$ limits

Statistical analysis

- BG estimated from Monte Carlo
- Signal from MC and measurements of electron and muon efficiencies
 - Signal efficiency: 20-40%
 - o SSM W'
 - Excited chiral boson
- Single-bin Bayesian analysis
 - Variable threshold on m_{T}
- No evidence of signal
- Limits shown in plots
 - Combination of electron and muon channels

 $\circ m_{W'} > 3.3 \, \text{TeV}$

Diboson resonances

Many models predict diboson resonances

- GUTs, Little Higgs, Technicolor, composite Higgs, extra dimensions, ...
- SSM Z' and W' are often used as benchmarks
 - \circ Also graviton
- ATLAS is carrying out searches in many channels
 - WZ, WW, ZZ, HH, ...
- And there are many decay modes for the bosons

 $\circ \quad W \longrightarrow lv, Z \longrightarrow ll, H \longrightarrow bb, \dots$

- Report here on two recent results
 - $\circ W' \longrightarrow WZ \longrightarrow lllv$
 - $\circ \quad X \longrightarrow HH \longrightarrow bbbb$

$W' \rightarrow WZ \rightarrow lllv$ search

Fully-leptonic search for W'

- <u>ATLAS-CONF-2014-015</u>
- Lepton = electron or muon
- Z from opposite-sign, sameflavor leptons
 - $|m_{ll} m_{Z}| < 20 \text{ GeV}$
- W from lepton and MET (assumed from neutrino)
 - Neutrino p_z determined from $m_{lv} = m_W$
 - Smallest real or real part of imaginary solution retained
- Search in *m_{WZ}* in two distinct signal regions
 - $\Delta \phi(l, MET) < 1.5$ for high mass
 - Inverse for low mass
 - Search boundary at 250 GeV

$W' \rightarrow WZ \rightarrow lllv$ limits

Statistical analysis

- BG taken from Monte Carlo
- Signal from MC and datadriven estimates of lepton efficiencies and fake rates
 - Signal efficiency shown in plot (6-35%)
- No evidence for signal
- CL_s evaluation of limits
 - See figure
 - m_W > 1.5 TeV
- Limits also set for HVT (heavy vector triplets) with different strength parameters

σ × BR(W'→WZ) [pb]

$G^* \rightarrow HH \rightarrow bbbb$ search

Di-Higgs search

- With Higgs boson observation, we can now search for decays to Higgs
- Here search for G* decay to a narrow HH resonance
- Both Higgs decay to bb
- Signal is four b-jets where each of two distinct bb pairs has mass close to 125 GeV
 - Plus veto of events where extra jets look like top
- Remaining BG is 90% multijet
 - Normalized using control region (i.e. not *HH* or *ZH*) and comparing with same for 2-tag
- Lower plots shows the search spectrum after selection

$G^* \rightarrow HH \rightarrow bbbb$ limits

Statistical analysis

- Search range 0.5 1.5 TeV
- No evidence for signal
- Limits obtained with CL_s
- Signal (first KK excitation of gravition) shape and normalization taken from simulation
- Signal efficiency: 2-6%
- Plot at right shows cross section limits
- Benchmark excluded for 590 < m_{G^*} < 710 GeV
- <u>ATLAS-CONF-2014-005</u>

LHCP

June 5, 2014

$QBH \rightarrow lj$ search

Quantum black holes (QBHs)

- Predicted in low-scale quantum gravity theories
- With mass near m_D, QBH may decay to two particles
 - Unlike semiclassical BHs which decay to may particles
 - m_D = scale of quantum gravity

QBH search

- Search in the lepton-jet (*lj*) channel where BG is small
 - lepton = electron or muon
- Figures show m_{lj}
 - Lepton + highest- p_{T} jet
 - Top is electron channel
 - Bottom is muon channel

$QBH \rightarrow lj$ limits

Statistical analysis

- BG shapes taken from simulation with normalization obtained from control regions and MET spectra
- Signal depends on assumed threshold mass $M_{\rm th}$ ullet
 - Modeling approximations are valid above this value
 - Taken to be equivalent to the inverse gravitational radius 0
 - The number of signal events is obtained by counting those with m_{li} above 0 a threshold close to $M_{\rm th}$ $imes {\sf BF}_{\sf eq}$ [fb]
 - Difference accounts for detector resolution
- No evidence for signal ۲
- Limits evaluated using CL_s ۲
 - Figure at right
 - For n= 6 ADD extra dimensions

*M*_{th} > 5.3 TeV

PRL 112, 091804 (2014) ۲

PLB 728, 562 (2013) 0

Summary and conclusions

ATLAS searches for heavy resonances

- Part of a wide-ranging search for physics beyond the Standard Model
- A few recent searches are reported here
 - These and many earlier searches and other ATLAS results available from <u>ATLAS public results page</u>
 - Expect more results on 2012 data in the coming months
- So far the standard model looks pretty good
 - No BSM observations yet
 - But many limits on BSM signals
 - Chart on following page summarizes these using benchmark signals
 - See papers and public notes for full kinematic limits

Future

- These and other resonance searches will be extended significantly in the upcoming and future runs at the LHC
- <u>ATLAS-PHYS-PUB-2013-003</u> concludes, in the absence of a signal, the limit for the SSM Z[´] increases to m > 7.8 TeV for 3000 fb⁻¹ at 14 TeV

ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell/\gamma\gamma$ ADD QBH $\rightarrow \ell q$ ADD BH high N_{trk} ADD BH high $\sum p_T$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell\ell qq/\ell\ell\ell\ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell\nu\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ S^1/Z_2 ED UED	$- 2\gamma \text{ or } 2e, \mu \\ 1 e, \mu \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ 2 e, \mu \\ 2 or 4 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu \\ 2 \gamma$	1-2 j - 2 2 j - 2 j or - - 4 b ≥ 1 J/ - -	Yes Yes (2) Yes Yes	4.7 4.7 20.3 20.3 20.3 1.0 4.7 19.5 14.3 5.0 4.8	Mp 4.37 TeV Ms 4.18 TeV Mth 5.2 TeV Mth 5.7 TeV Mth 6.2 TeV Mth 6.2 TeV GKK mass 2.47 TeV GKK mass 1.23 TeV GKK mass 590-710 GeV gKK mass 0.5-2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.41 TeV	$\begin{array}{l} n = 2 \\ n = 3 \; \text{HLZ NLO} \\ n = 6 \\ n = 6, \; M_D = 1.5 \; \text{TeV, non-rot BH} \\ n = 6, \; M_D = 1.5 \; \text{TeV, non-rot BH} \\ k / \overline{M}_{Pl} = 0.1 \\ k / \overline{M}_{Pl} = 0.1 \\ k / \overline{M}_{Pl} = 0.1 \\ k / \overline{M}_{Pl} = 1.0 \\ \text{BR} = 0.925 \end{array}$	1210.4491 1211.1150 1311.2006 1308.4075 ATLAS-CONF-2014-016 ATLAS-CONF-2013-017 1203.0718 1208.2880 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu \ \ell'\ell' \\ \text{LRSM } W'_R \to t\bar{b} \end{array}$	2 e,μ 2 τ 1 e,μ 3 e,μ 1 e,μ	– – – 2 b, 0-1 j	– Yes Yes Yes	20.3 19.5 20.3 20.3 14.3	Z' mass 2.86 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.84 TeV		ATLAS-CONF-2013-017 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 ATLAS-CONF-2014-015 ATLAS-CONF-2013-050
CI	Cl qqqq Cl qqℓℓ Cl uutt	– 2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, ≥ 1	– – j Yes	4.8 5.0 14.3	Λ 7.6 TeV Λ 13 Λ 3.3 TeV	$\eta = +1$ 3.9 TeV $\eta_{LL} = -1$ C = 1	1210.1718 1211.1150 ATLAS-CONF-2013-051
DM	EFT D5 operator EFT D9 operator	-	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-147 1309.4017
۲Ø	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$\beta = 1$ $\beta = 1$ $\beta = 1$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e, μ 1 e, μ 2 e, μ 2 e, μ (SS)	$ \begin{array}{l} \geq 2 \ b, \geq 4 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b \\ \geq 1 \ b, \geq 1 \end{array} $	j Yes j Yes – j Yes	14.3 14.3 14.3 14.3	T mass790 GeVT mass670 GeVB mass725 GeVB mass720 GeV	T in (T,B) doublet isospin singlet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2013-056 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 –	– – j Yes –	20.3 13.0 4.7 13.0	q* mass 3.5 TeV q* mass 3.84 TeV b* mass 870 GeV /* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 ATLAS-CONF-2012-148 1301.1583 1308.1364
Other	LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2 e,μ 2 e,μ 2 e,μ (SS) - - √s =	2 j - - 7 TeV	_ _ _ _ √s =	2.1 5.8 4.7 4.4 2.0 8 TeV	№ mass 1.5 TeV № mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV 10 ⁻¹ 1	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e = 0.055, V_{\mu} = 0.063, V_{\tau} = 0 \\ \text{DY production, BR}(H^{\pm\pm} \rightarrow \ell \ell) = 1 \\ \text{DY production, } q &= 4e \\ \text{DY production, } g = 1g_D \end{split}$	1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS searches for heavy resonances