Search for long-lived particles with the ATLAS detector

Shimpei Yamamoto (Univ. of Tokyo)

on behalf of the ATLAS collaboration

LHCP2014 @ New York

Outline

- Introduction
- Long-lived particle signatures and BSM examples
- In the second second
 - Late-decaying particles (<u>SUSY-2013-03</u>)
 - Slow massive charged particles (<u>ATLAS-CONF-2013-058</u>)
 - Disappearing tracks (<u>SUSY-2013-01</u>)
 - Displaced vertices (<u>ATLAS-CONF-2013-092</u>)
- Summary

Introduction

- Though no sign of BSM yet, the measured Higgs mass of ~126 GeV may imply the existence of unknown particles related the hierarchy problem.
- This also motivates us to:
 - SUSY
 - High-scale supersymmetry breaking (or heavy scalars): split SUSY, AMSB, ...
 - Stealth SUSY, RPV scenarios, ..
 - Non-SUSY : Less constrained. Some could also give a solution to the hierarchy problem, a good dark matter candidate
 - e.g. Hidden Valley, Higgs portal, multi-charged particles(monopoles, Q-balls), quirks, ...
- All these models/scenarios predict various long-lived particle signatures at the LHC!
 - Easily go undetected! Cover loopholes in generic BSM searches. (Could be only the one we can observe in the LHC data?)

Signatures and BSM examples

Signatures and BSM examples

Late-decaying particles

- Benchmark model: <u>Split SUSY</u>
 - Gluinos decay via internal heavy squark lines, become meta-stable and form bound states (Rhadrons)
- Signature to explore:
 - Special case that gluinos are produced near threshold:
 - Some R-hadrons have low β and "stop" in the detector. Then they decay much later.
 - \Rightarrow Look for energetic jets (from R-hadron decays) in "empty bunches".
 - Small background mainly comes from cosmic, noise and beam halo interactions.

Late-decaying particles

Events / 0.10

energy (GeV)	model	decay	mass (GeV)	Expected	Observed	Expected Limit $(\pm 1\sigma_{ovp})$	Č
100	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	$m_{\tilde{g}} - 100$	526	545	Observed Limit	00
100	Generic	$\tilde{g} \rightarrow t\bar{t} + \tilde{\chi}^0$	$m_{\tilde{g}}$ – 380	694	705	$ pp \rightarrow \tilde{g}\tilde{g} $ Theory	<u> </u>
300	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	731	832	Scale + PDF	<u>ک</u>
300	Generic	${ ilde g} o ~t {ar t} + { ilde \chi}^0$	100	700	784		0000
300	Intermediate	$e~{ ilde g} ightarrow~g/q{ar q} + { ilde \chi}^0$	100	615	699	$300{ m GeV}$	onp 20
300	Regge	${ ilde g} o ~g/q {ar q} + { ilde \chi}^0$	100	664	758		or
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	$m_{\tilde{t}} - 200$	389	397		<u>မ</u> 15
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	384	392		ror
100	Regge	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	371	379		10 ad
100	Regge	${ ilde b} o ~ b + { ilde \chi}^0$	100	334	344		
							-

Slow massive charged particles

- Nearly-stable NSLP staus in GMSB. Can be observed as "slow heavy muons".
- Select slow muon-like particles with $p_T > 50$ GeV, $\beta < 0.95$ and reconstruct mass by: $m = p/\beta\gamma$
 - *p* taken from track, β measured by muon detector (also required to be consistent with the calorimeter-based measurement)

- Timing calibration crucial!!
 - Performed using $Z \rightarrow \mu \mu$ events
 - ▶ Resolution: ~2.5%
- Background dominated by muons with mismeasured β.
 - Estimated by generating combination of the p of a candidate track with a randomly extracted β from muon- β distribution.

Slow massive charged particles

Results

- Significant signal-to-background ratios expected in two-track-candidates events.
 - No excess above SM expectation.
- Interpretations in context of GMSB:
 - Stau mass >402–347 GeV (tanβ=5-50)
 - >267 GeV (assuming direct pair production)

direct stau production

Disappearing tracks

- Wino-LSP SUSY scenarios predict the mass-degenerate $\tilde{\chi}_{1}^{\pm}$ and $\tilde{\chi}_{1}^{0}$, resulting in a significant $\tilde{\chi}_{1}^{\pm}$ lifetime:
 - $ightarrow m_{ ilde{\chi}_1^\pm} m_{ ilde{\chi}_1^0} \sim 160~{
 m MeV}$
 - $au_{\tilde{\chi}_1^\pm} \sim 0.2 \,\mathrm{ns}$
- Some decaying X[±]₁ could be reconstructed as a "high-p_T disappearing track".
 - $\tilde{\chi}_{I}^{\pm} \rightarrow \tilde{\chi}_{I}^{0} \pi^{\pm}$: charged pion is to soft to be reconstructed (~100MeV).
 - Need to be highly boosted (high p_T) to get reconstructed.
- Explore EW production using events containing "ISR jet + disappearing track"

Disappearing track

Selection

- Monojet-like final state: $\Delta \phi$ (jet,MET)~ π
- Disappearing track: isolated, highest p_T, <u>few associated hits in the outer tracking</u> volume(<5 TRT hits)
 - Dedicated tracking using Pixel-only seeds to enhance the short-track rec. efficiency.

Disappearing track

- Chargino mass < 270 GeV excluded.
- Directly constraining the wino dark matter mass.

Displaced vertex

- Small RPV couplings result in a significant lifetime of neutralino

 T∝(RPV coupling)⁻²
- Good displaced-vertex(DV) rec. efficiency for decaying neutralinos thanks to dedicated tracking.
 - Allows large impact parameters.

• Selection:

- Muon: p_T(μ)>55 GeV, |η|<1.07, |d₀|>1.5mm
- DV fiducial volume r_{DV}<180mm, |z_{DV}|<300mm
- Veto vertices in detector material layers
- DV mass > 10GeV
- Number of tracks in DV > 4

• Small background expected (~0.02 event), estimated in a data-driven way.

- Hadronic interactions with gas molecules (outside beampipe)
- Random combinations of tracks

Displaced vertex

Results

- No candidate event observed.
 - A limit of <0.14 fb on the visible cross section</p>
- Interpretations in 3 models with different squark/neutralino masses:
 - for a range of lifetime
 - (assuming 100% branching fraction)

Sample	$m_{ ilde{q}}$	σ	$m_{ ilde{\chi}_1^0}$	$\langle \gamma \beta \rangle_{\tilde{\chi}^0_1}$	$c au_{ m MC}$	λ'_{211}
	[GeV]	[fb]	[GeV]		[mm]	
MH	700	124.3	494	1.0	175	0.2×10^{-5}
ML	700	124.3	108	3.1	101	1.5×10^{-5}
HL	1000	11.9	108	5.5	220	20.0×10^{-5}

Summary

- Various searches for long-lived particles have been performed in ATLAS.
 - Almost all possible signatures/final states being covered.
- "Long-lived particle signatures" fill loopholes in generic BSM searches.
 - Also highly motivated following the current Higgs/SUSY results.
- More updates to come (with 8TeV data), including more final states and BSM scenarios.

Backup slides