Search for long-lived particles with the ATLAS detector

Shimpei Yamamoto (Univ. of Tokyo)

on behalf of the ATLAS collaboration

LHCP2014 @ New York

Outline

- ๏ Introduction
- ๏ Long-lived particle signatures and BSM examples
- ๏ Highlights of ATLAS searches with 8 TeV data
	- ‣ Late-decaying particles [\(SUSY-2013-03\)](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2013-03/)
	- ‣ Slow massive charged particles ([ATLAS-CONF-2013-058\)](http://cds.cern.ch/record/1557775)
	- **Disappearing tracks ([SUSY-2013-01](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2013-01/))**
	- Displaced vertices ([ATLAS-CONF-2013-092](http://cds.cern.ch/record/1595755))
- ๏ Summary

Introduction

- ๏ Though no sign of BSM yet, the measured Higgs mass of ~126 GeV may imply the existence of unknown particles related the hierarchy problem.
- ๏ This also motivates us to:
	- ‣ SUSY
		- High-scale supersymmetry breaking (or heavy scalars): split SUSY, AMSB, ..
		- Stealth SUSY, RPV scenarios, ..
	- **Non-SUSY** : Less constrained. Some could also give a solution to the hierarchy problem, a good dark matter candidate
		- e.g. Hidden Valley, Higgs portal, multi-charged particles(monopoles, Q-balls), quirks, ..
- ๏ All these models/scenarios predict various long-lived particle signatures at the LHC!
	- **Easily go undetected! Cover loopholes in generic BSM searches.** (Could be only the one we can observe in *the LHC data?)*

Signatures and BSM examples

Signatures and BSM examples

Late-decaying particles

๏ Benchmark model: Split SUSY

‣ Gluinos decay via internal heavy squark lines, become meta-stable and form bound states (Rhadrons)

๏ Signature to explore:

- ‣ Special case that gluinos are produced near threshold:
	- Some R-hadrons have low β and "stop" in the detector. Then they decay much later.
- \rightarrow \Rightarrow Look for energetic jets (from R-hadron decays) in "empty bunches".
	- Small background mainly comes from cosmic, noise and beam halo interactions.

Late-decaying particles

Events / 0.10 Events / 0.10

 $5¹$

 $5²$

Slow massive charged particles

- ๏ Nearly-stable NSLP staus in GMSB. Can be observed as "slow heavy muons".
- \circ Select slow muon-like particles with p_T >50 GeV, β <0.95 and reconstruct mass by: $m = \frac{p}{\beta \gamma}$
	- ‣ *p* taken from track, β measured by muon detector (also required to be consistent with the calorimeter-based measurement)

- **•** Timing calibration crucial!!
	- Performed using $Z \rightarrow \mu\mu$ events
	- Resolution: ~2.5%
- **•** Background dominated by muons with mismeasured β.
	- ‣ Estimated by generating combination of the p of a candidate track with a randomly extracted β from muon-β distribution.

Slow massive charged particles

Results

- ๏ Significant signal-to-background ratios expected in two-track-candidates events.
	- ‣ No excess above SM expectation.
- ๏ Interpretations in context of GMSB:
	- \rightarrow Stau mass >402–347 GeV (tan β =5-50)
	- ‣ >267 GeV (assuming direct pair production) $\frac{1}{2}$ 2. ˜⁰ masses below 475–490 GeV are excluded, with corresponding ˜⁺ masses 210–260 GeV eV (

 $\mathcal{F}_{\mathcal{A}}$, $\mathcal{F}_{\mathcal{A}}$ as a function of the $\mathcal{F}_{\mathcal{A}}$ models. Observed limits are given limits are given limits are given by

direct stau production

Disappearing tracks *M*² : *M*³ ≈ 3 : 1 : 7, resulting in a wino-like lightest supersymmetry particle (LSP). When µ is large, the charged and neutral wino masses are essentially degenerate at tree level. The mass splitting between the lightest chargino and neutralino and neutralino (∴m induN independent. Fig. 1 (a) and (b) show the lightest chargino mass and ∆*m*χ˜1 in the *m*3/2-*m*⁰ Figure 1: The χ˜[±] ¹ mass (a) and mass splitting (b) in the *m*3/² − *m*⁰ space for tan β > 5 and µ > 0. $1 - 1$ is classified as $2 - 1$ $\mathbf C$ associated hits in the outer part of the tracking volume. Fig. 2 shows two $\mathbf C$

500 1000 1500 2000 2500 3000

0

20

m₀ [GeV]

- **O** Wino-LSP SUSY scenarios predict the mass-degenerate $\tilde{\chi}_{1}^{\pm}$ and $\tilde{\chi}_{1}^{0}$, resulting in a significant $\tilde{\chi}_{\textsf{I}}^{\pm}$ lifetime:
	- $m_{\tilde{\chi}^\pm_1} m_{\tilde{\chi}^0_1} \sim 160$ MeV
	- \rightarrow $\tau_{\tilde{\chi}^\pm_1} \sim$ 0.2 ns
- Some decaying $\tilde{\chi}_{\text{I}}^{\pm}$ could be reconstructed as a *"high-pT disappearing track"*.
	- $\lambda \tilde{\chi}^{\pm}$ $\rightarrow \tilde{\chi}^0_1 \pi^{\pm}$: charged pion is to soft to be **Pixel** SCT reconstructed (~100MeV).
	- \blacktriangleright Need to be highly boosted (high p_T) to get reconstructed.
- **•** Explore EW production using events containing *"ISR jet + disappearing track"*

where *i* 1, 2000 $\frac{1}{2500}$ $\frac{3000}{1000}$, ⁰⁰, and **SU**(3), **and** *S* in igeVI coupling. The masses of the bino, wino and gluino then occur in the approximate ratio *M*¹ :

m₀ [GeV]

0.1

500 1000 1500 2000 2500 3000

Disappearing track

Selection

- ๏ Monojet-like final state: Δφ(jet,MET)~π
- \bullet Disappearing track: isolated, highest p_T , few associated hits in the outer tracking volume(<5 TRT hits)
	- ‣ Dedicated tracking using Pixel-only seeds to enhance the short-track rec. efficiency.

Disappearing track

- Chargino mass < 270 GeV excluded. O
- Directly constraining the wino dark matter mass. O

Displaced vertex

- Small RPV couplings result in a **Benchmark model** \ln ificant \ln $\frac{3}{5}$ Finituatit filetime of field anno $\frac{1}{2}$ + "DV+muon" f → τ∝(RPV coupling) significant lifetime of neutralino -2
- emerging for decaying neutralings anks to dedicated tracking. The first parameter ϵ is ϵ in ϵ ๏ Good displaced-vertex(DV) rec. efficiency for decaying neutralinos thanks to dedicated tracking.
	- Allows large impact parameters.

Selection ๏ Selection:

- $\frac{1}{2}$ Muon: p (11) >55 GeV, $ln|<1.07$, $|d_1|$ >1.5 mm \rightarrow Muon: p_T(µ)>55 GeV, |η|<1.07, |d₀|>1.5mm
- \sim DV fiducial volume r \sim 180 mm, \approx 18200 mm, \overline{V} Dy Huddcial volume r_{DV} routing, $|Z_{\text{DV}}|$ 300m \rightarrow DV fiducial volume r_{DV}<180mm, $|z_{DV}|$ <300mm
- b veto vertices ‣ Veto vertices in detector material layers
	- → DV mass > 10GeV
	- \rightarrow Number of tracks in DV > 4

Figure 3: The existency as *a function* of *r*_D² signal-MC sample. The mass is the mass in the blank-mass in the blank-mass in the blank-mass is the blank-mass in the blank-mass in the blank-mass in the blank-mass in t ๏ Small background expected (~0.02 event), estimated in a data-driven way.

uncertainty and the second second

- \triangleright Hadronic interactions with gas molecules (outside beampipe) \blacksquare
- ‣ Random combinations of tracks

12

Displaced vertex $\begin{array}{ccc} \text{IICNISTAV} \end{array}$ mass of 10 GeV, which was defined before looking at the data, is marked. No vertices are observed in the signal region. α there could be one or two true candidates per event, depending on the branching ratio α $\mathbf{B} \cap \mathbf{B}$ for \mathbf{B} and \mathbf{B} \mathbf{C} $\overline{}$

 \sim

Results

- ๏ No candidate event observed.
	- ‣ A limit of <0.14 fb on the visible cross section
- ๏ Interpretations in 3 models with different squark/neutralino masses: • Interpretations in a models with different
	- \rightarrow for a range of lifetime
- ‣ (assuming 100% branching fraction) $\frac{1}{2}$ models with different combinations of $\frac{1}{2}$

Summary

- ๏ Various searches for long-lived particles have been performed in ATLAS.
	- ‣ Almost all possible signatures/final states being covered.
- ๏ "Long-lived particle signatures" fill loopholes in generic BSM searches.
	- ‣ Also highly motivated following the current Higgs/SUSY results.
- ๏ More updates to come (with 8TeV data), including more final states and BSM scenarios.

Backup slides