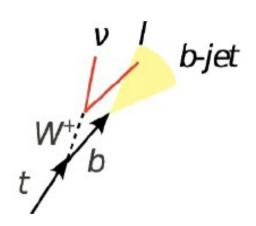
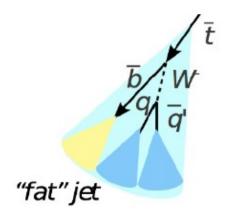



# New Physics with Top Quarks at CMS

Ivan Marchesini on behalf of the CMS Collaboration LHCP 2014, New York

#### Introduction


- Searches within "Beyond 2 Generations" group:
  - → non-SUSY searches mostly with top quarks
  - → intersection of Top, Susy, Exotic physics
  - → challenging final states: involved in development of cutting edge reconstruction techniques




► Personal selection with focus on recent results. More at: <a href="https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G">https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</a>

## **Analysis Techniques**

Boosted regime: classical selection methods fail

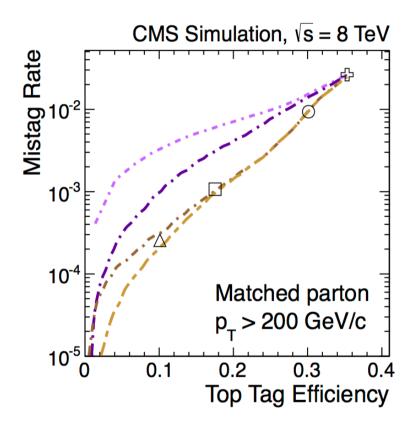




→leptons close to jets

→decay products from heavy particles merged into large fat-jets

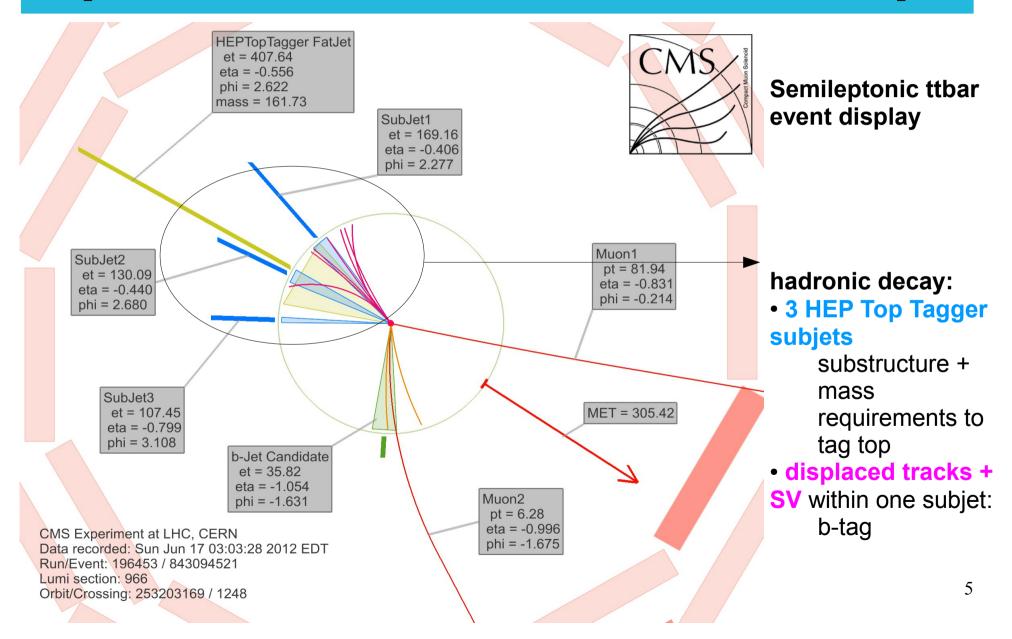
→Cambridge-Aachen (CA) jets R=0.8/1.5


→jet substructure

## **Substructure Tools**

[CMS-PAS-JME-13-006/007, CMS-PAS-BTV-13-001]

- **▶** Top Taggers:
  - → CMS Top Tagger, based on CA8 jets
  - → HEP Top Tagger, uses CA15 jets
    - substructure: ≥ 3 subjets
    - jet and subjets mass requirements (top and W masses)


- W/Z/H-Tagging based on CA8 jets: substructure=2 subjets + mass cut
- Subjet b-tagging:
  - displaced tracks and secondary vertices (SV) within subjet to build b-discriminator
  - improves top-tagging + H→bb tagging

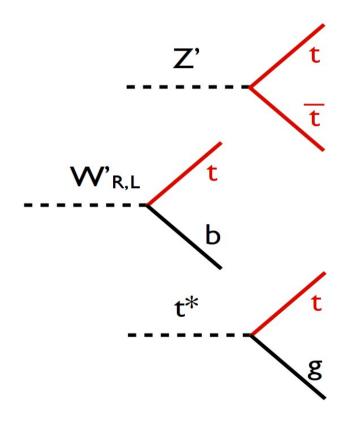


--- HEP Top Tagger
--- HEP + sub. b-tag

## **Substructure Tools**

[CMS-PAS-JME-13-006/007, CMS-PAS-BTV-13-001]

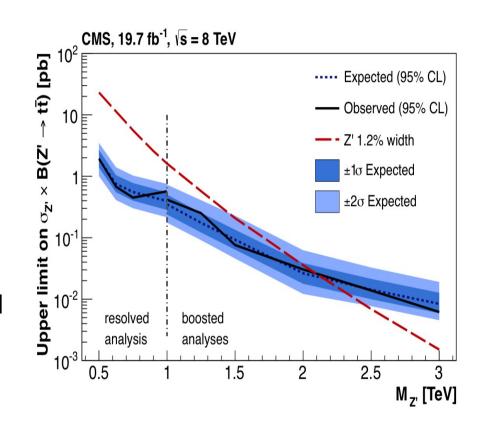



## **BSM Resonances**

## **New Physics: BSM Resonances**

#### Resonances in BSM models:

$$Z' \rightarrow tt$$
,  $W' \rightarrow tb$ ,  $t* \rightarrow tg$ 

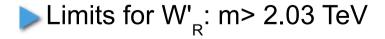

- Predicted in many models:
  - → extended gauge sectors
  - → top-colour condensates
  - → warped extra dimensions
  - → Kaluza-Klein excitations
  - → compositeness: excited top quarks

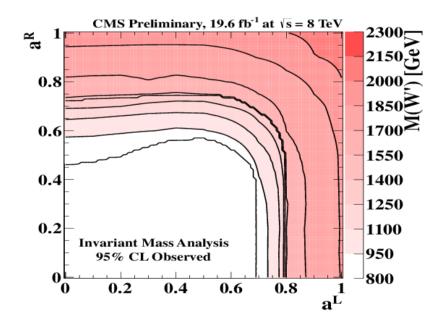


#### **Resonances**→ttbar

[Phys. Rev. Lett. 111, 211804]

- Boosted full hadronic:
  - → 2 back-to-back high-p<sub>+</sub> jets
  - → both CMS top-tagged
- Boosted semi-leptonic:
  - → high-p<sub>T</sub> CA8 jet (hadronic decay)
  - → lepton (e, μ): no isolation required
  - → n b-tag event categories
- Resolved semi-leptonic:
  - → 4 jets, isolated lepton, E<sub>T</sub><sup>miss</sup>

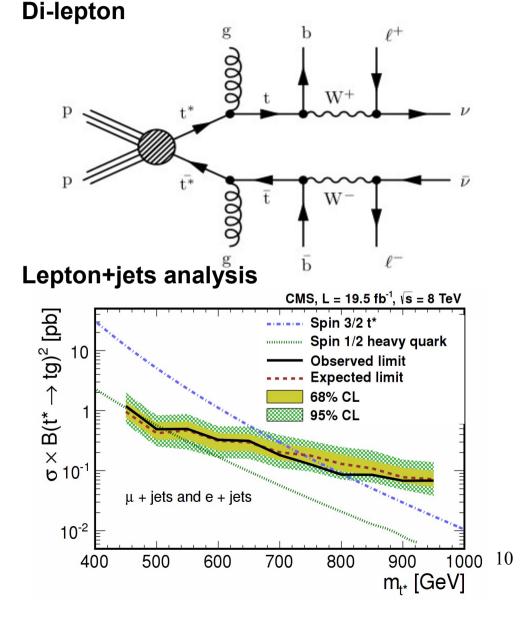




- Bump-hunt search in M
- Various theory modelsconsidered: limits between 2.1-2.5 TeV

#### **W'**→tb Resonances

[hep-ex:1402.2176, accepted by JHEP]

- Top leptonic decay:
  - → one isolated lepton (e, μ)
  - → 2 jets, one b-tagged
- Observable M(tb):
  - → top candidate+highest-p<sub>T</sub> jet
- ▶ Both left- and right-handed W' couplings considered:
  - → accounted left-handed interference with SM





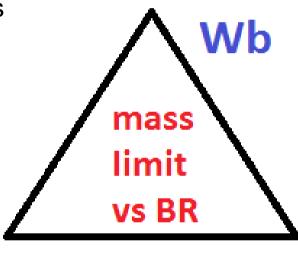

## **Excited Top Quarks**

[hep-ex:1311.5357 (sub. to JHEP), CMS-PAS-B2G-12-008]

- > ttbar signature + ≥2 jets
- **▶** Lepton+jets:
  - $\rightarrow$  one isolated lepton (e,  $\mu$ )
  - → ≥6 jets, one b-tagged
- **▶** Di-lepton
  - → two isolated leptons (e, μ)
  - → 2 b-tagged jets
  - → 2 non b-tagged jets
- **►** Mass t\* reconstruction:
  - → from objects in final state
- Limits from  $M_{t^*}$  shape for different models:  $m_{t^*} < 803$  GeV for spin-3/2 t\*



## **VLQ Searches**


## **New Physics: Vector-Like Quarks**

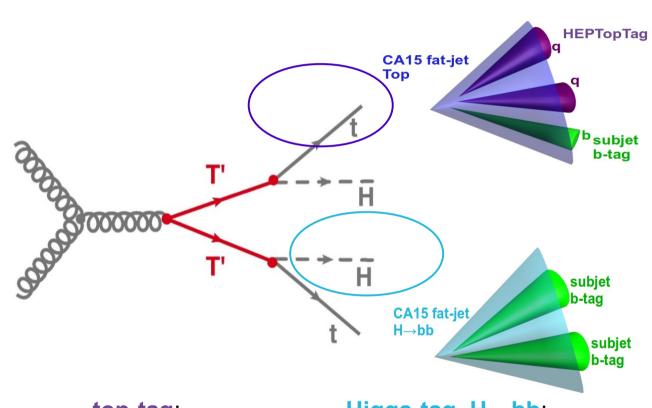
Minimal SM extension with 4<sup>th</sup> generation of quarks replicating SM ones excluded after Higgs discovery

- Still interesting:
  - vector-like quarks

L- and R-handed chiralities transformed in the same fashion under SU(2)⊗U(1)

- Predicted by many models:
  - → Little-Higgs models
  - → composite Higgs models
  - → warped extra dimensions
- Current results for pair production



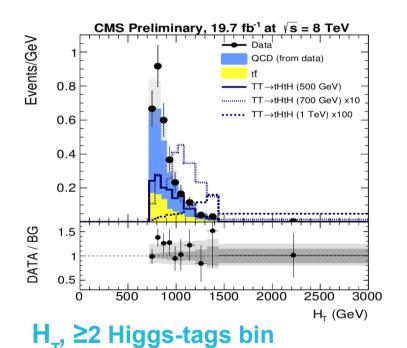

Zt CMS Style tH

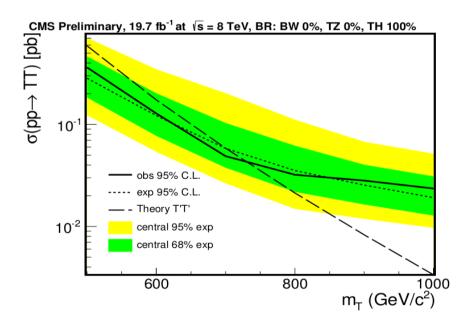
#### Decays:

Top-like T': T'→Wb, Zt, Ht Bottom-like B': B'→tW, bH, bZ

## Fully Hadronic T'→tH, H→bb

[CMS-PAS-B2G-14-002]





- top-tag:
  HEPTopTagger
  subjet b-tagging
- Higgs-tag, H→bb: 2xsubjet b-tagging jet-mass > 60 GeV

- Use of most advanced substructure:
  - → HEPTopTagger
  - subjet b-tagging (first time)
- Increase acceptance:
  - → ≥ 1 top-tag and ≥ 1 Higgs-tag

## Fully Hadronic T'→tH, H→bb [CMS-PAS-B2G-14-002]

- Two observables combined in Likelihood:  $H_T = \sum_{\tau} p_{\tau}^{jets}$  and  $M_{Higgs}$
- >==1 and ≥2 Higgs-tags categories
- Use of substructure: QCD background reduced to the level of ttbar



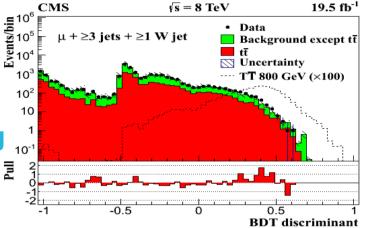


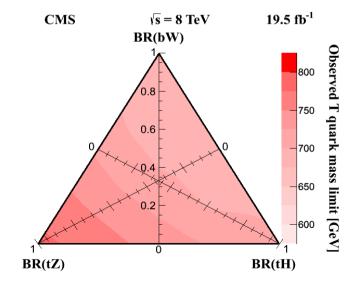
Limits competitive with leptonic final states: obs. limit 747 GeV

## T' in Leptonic Final States

[Phys. Lett. B 729 (2014) 149]

#### **▶** Single lepton:


multivariate analaysis substructure


- two event categories: with or without W-tag
- top-tagging applied
- boosted decision tree BDT:
  - multiplicity/p<sub>T</sub> of reconstructed objects (lepton, jets, tagged jets...)
  - N of b-, W- and top-tags

#### **►** Multilepton:

- → counting experiment
- → event categories:
  - two/three leptons
  - opposite/same-sign di-leptons

#### BDT discriminant, single μ channel





final combined limit up to 782 GeV

## **B' VLQ Searches**

[CMS-PAS: B2G-12-019, B2G-12-021, B2G-13-003]

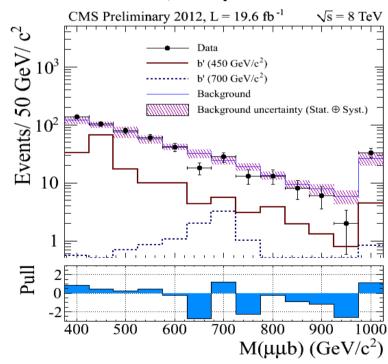
#### **Single lepton** (e, μ)

- → ≥4 AK5 jets, ≥1 b-tagged
- → categories: number of V-tags (V=W/Z/H)
- → limits based on  $S_{\tau} = p_{\tau}^{lept} + p_{\tau}^{miss} + \sum p_{\tau}^{jets}$

#### **Di-lepton**

- → opposite-sing leptons, from Z→I<sup>+</sup>I<sup>-</sup>
- → require Z mass + 1 b-tag
- → limits from  $M_{B'}$ ,  $B'=Z \rightarrow I^{\dagger}I^{\dagger}+b$ -jet

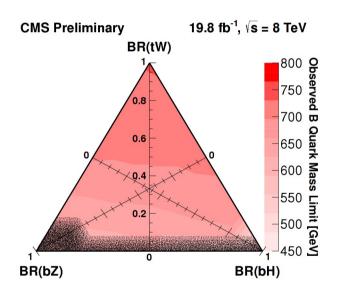
#### **►** Multi-lepton


**Event categories:** 

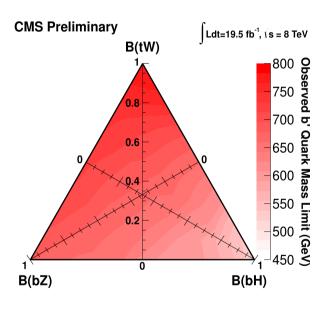
- → opposite-sign/same-flavor lepton pairs:
  - number
  - on/off-shell Z
- → hadronic tau candidate
- → b-tag
- → magnitude of S<sub>T</sub>

#### **Decays:**

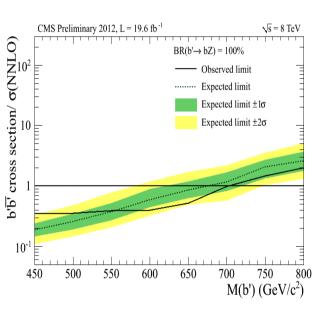
Bottom-like B': B'→tW, bH, bZ


#### Mass B' candidate, di-lepton




## **B' VLQ: Results**

[CMS-PAS: B2G-12-019, B2G-12-021, B2G-13-003]


#### Single lepton



#### **Multi-lepton**



#### **Di-lepton**



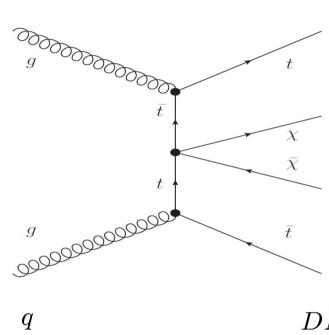
final limit up to 732 GeV

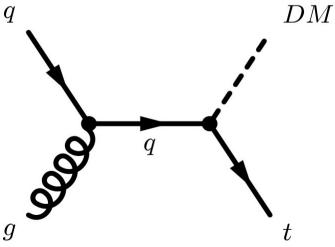
final limit up to 785 GeV competitive also in bZ corner obs limit B'→bZ = 700 GeV

Contributes to bZ corner:

## **Other Searches with Tops**

### **Dark Matter Searches**


[CMS-PAS-B2G-13-004, CMS-PAS-B2G-12-022]


#### Di-lepton analysis

→ DM particle is a Dirac particle interacting with quarks via contact interaction

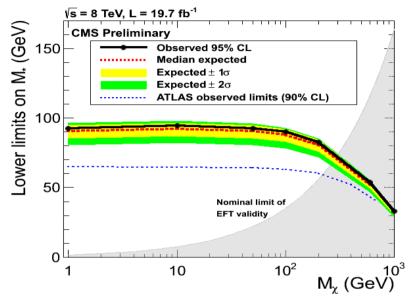
#### Monotop analysis

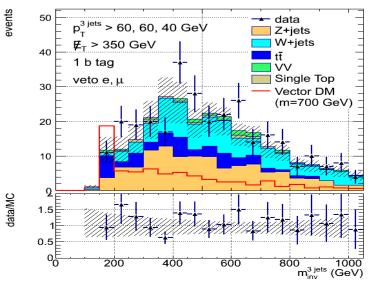
- → DM produced through FCNC diagrams
- → both vector or scalar DM boson possible: limits for both options





## **Dark Matter Searches**


[CMS-PAS-B2G-13-004, CMS-PAS-B2G-12-022]


#### Di-lepton analysis

- → ≥ 2 jets
- → E<sub>T</sub><sup>miss</sup> > 320 GeV
- → limits on the interaction scale M.

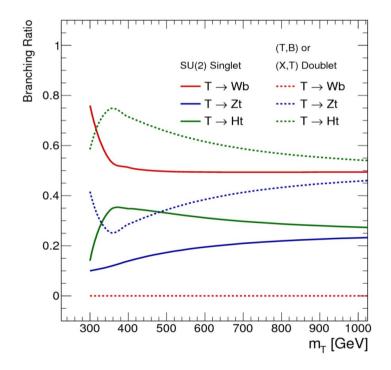
#### Monotop analysis

- → hadronic top: ==3 jets, M<sub>iii</sub><250 GeV
- → E<sub>T</sub><sup>miss</sup> > 350 GeV
- $\rightarrow$  1 b-tag, no isolated leptons (e,  $\mu$ )
- → M<sub>DM</sub> limit: 327 GeV (scalar), 655 GeV (vector)





#### Conclusions

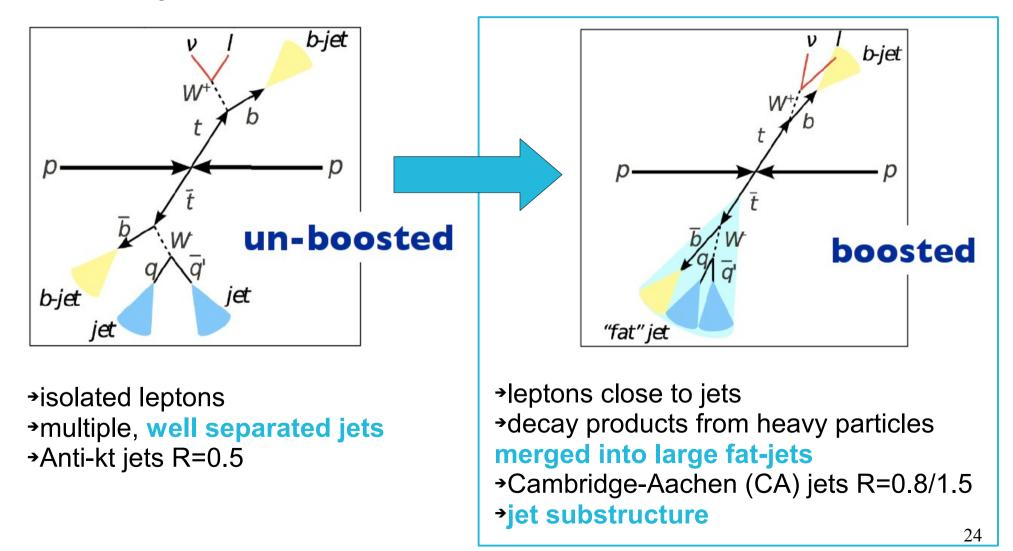

- Rich complexity of final states investigated
- Single VLQ production searches effort started
- Boosted topologies: cutting edge substructure techniques
- No excess observed, but set limits in so far unexplored regions
- Current focus is preparation for 13 TeV

- Results not shown:
  - → T5/3 Top Partners [Phys. Rev. Lett. 112 (2014) 171801]
  - → Barion Number Violation [Physics Letters B 731 (2014) 173]
  - → Displaced Superymmetry [CMS-PAS-B2G-12-024] L. Vanelderen's talk

## **Additional Slides**

## **New Physics: Vector-Like Quarks**

- Sequential 4<sup>th</sup> generation of quarks replicating SM ones excluded after Higgs discovery
- Still interesting:
  - → vector-like quarks
  - L- and R-handed chiralities transformed in the same fashion under SU(2)⊗U(1)
  - → quarks with exotic charges (5/3) do not contribute significantly to the Higgs cross-section
- Predicted by many models:
  - → Little-Higgs models
  - → composite Higgs models
  - → warped extra dimensions




#### Decays:

Top-like T→Wb, Zt, Ht Bottom-like B→tW, bH, bZ

## **Analysis Techniques**

Boosted regime: classical selection methods fail



## **Substructure Tools**

[CMS-PAS-JME-13-006/007, CMS-PAS-BTV-13-001]

#### ▶ Top Taggers:

- → CMS Top Tagger, based on CA8 jets
- → HEP Top Tagger, based on larger CA15 jets: smooth transition from low-p<sub>T</sub> to boosted regime
  - substructure: ≥ 3 subjets
  - jet and subjets mass requirements (top and W masses)
- W/Z/H-Tagging based on CA8 jets: substructure=2 subjets + mass cut
- Subjet b-tagging:
  - full dedicated commissioning of b-tagging in the boosted regime
  - displaced tracks and secondary vertices (SV) within subjet to build b-discriminator
  - improves top-tagging + H→bb tagging

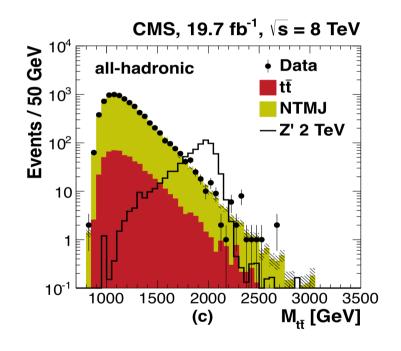


## Resonances

#### **Resonances**→ttbar

[Phys. Rev. Lett. 111, 211804]

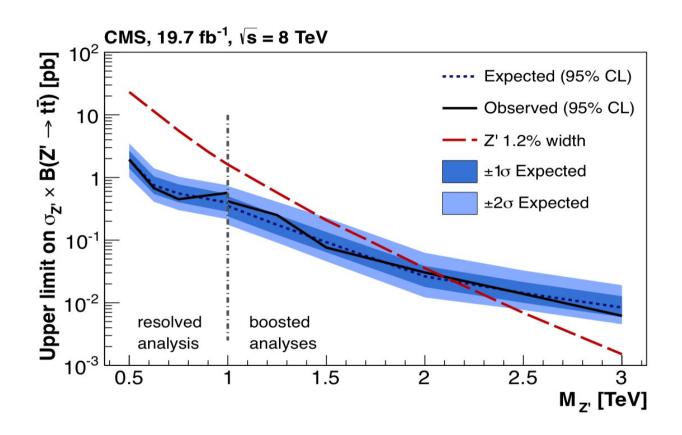
#### Full hadronic:


- → 2 back-to-back high-p<sub>+</sub> jets
- → both CMS top-tagged
- → main background: QCD
  - data-driven estimation from signal-depleted regions (anti-tag)

#### Boosted semi-leptonic:

- → high-p<sub>T</sub> CA8 jet (hadronic decay)
- → non-isolated lepton (e, μ)
- → suppress QCD: cuts on p<sub>T</sub><sup>rel</sup>(lep,jet),
   ΔR(lep,jet), E<sub>T</sub><sup>miss</sup>
- → n b-tag event categories

#### ▶ Resolved semi-leptonic:

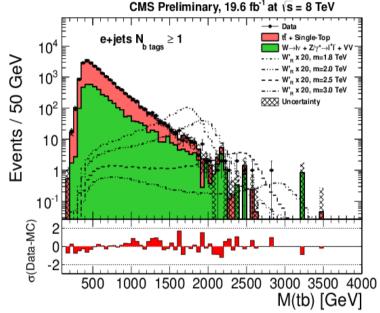

→ 4 jets, isolated lepton, E<sub>T</sub><sup>miss</sup>

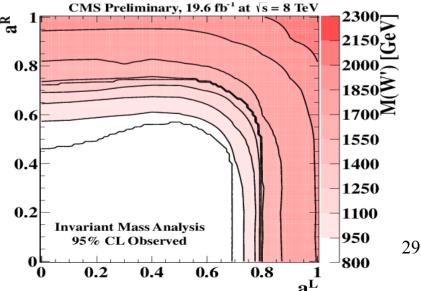


 $\mathbf{M}_{_{tt}}$  from hadronic analysis

#### Resonances—ttbar: limits

[Phys. Rev. Lett. 111, 211804]

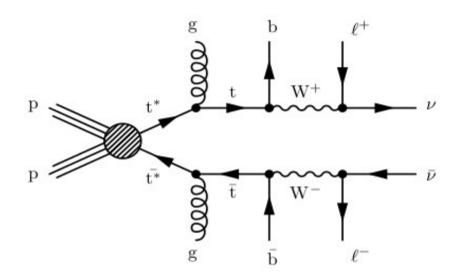


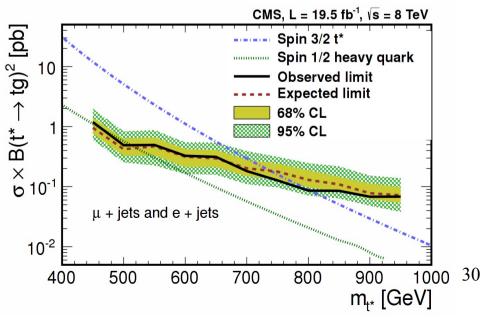


- Set limits based on M<sub>it</sub> distributions, combining three analyses.
- **▶** Various theory models considered:
  - → narrow topcolor Z': m>2.1 TeV
  - → topcolor Z' with 10% width: m>2.7 TeV
  - → RS Kaluza-Klein gluon: m> 2.5 TeV

### W'→tb Resonances

[hep-ex:1402.2176, accepted by JHEP]

- Top leptonic decay:
  - → one isolated lepton (e, μ)
  - → 2 jets, one b-tagged
- **▶** Top reconstruction
  - $\rightarrow$  W =  $P_{T}^{miss}$  + lep
  - → W+jet closest to top mass
- Observable M(tb):
  - → combine top with highest-p<sub>T</sub> jet
- ▶ Both left- and right-handed W' couplings considered:
  - → accounted left-handed interference with SM
- Limits for W'<sub>R</sub>: m> 2.03 TeV

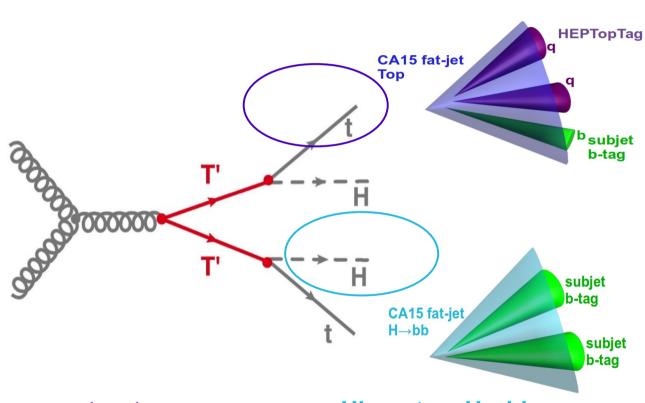



## **Excited Top Quarks**

[hep-ex:1311.5357 (sub. to JHEP), CMS-PAS-B2G-12-008]

- ttbar signature + ≥2 jets
- Lepton+jets:
  - $\rightarrow$  one isolated lepton (e,  $\mu$ )
  - → ≥6 jets, one b-tagged
- **▶** Di-lepton
  - → two isolated leptons (e, μ)
  - → 2 b-tagged jets
  - → 2 non b-tagged jets
- **►** Mass t\* reconstruction:
  - $\rightarrow$  m(lvb)=m(qqb)=m,
  - → m(lvbg)=m(qqbg)=m<sub>t\*</sub>, where m<sub>t\*</sub> is a free parameter
- Limits from  $M_{t+jet}$  shape for different models:  $m_{t+jet} < 803$  GeV for spin-3/2 t\*






## **VLQ Searches**

## Full Hadronic T→tH

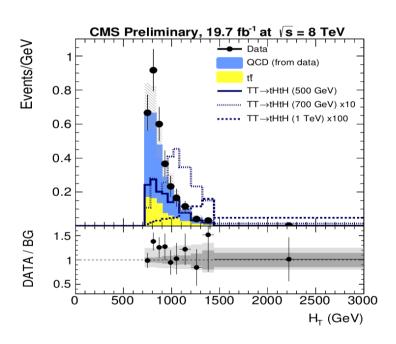
[CMS-PAS-B2G-14-002]

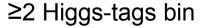


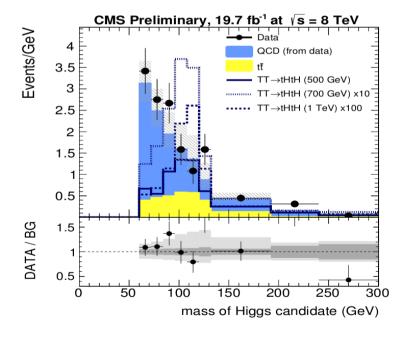
top-tag:

HEPTopTagger subjet b-tagging

Higgs-tag, H→bb:


2xsubjet b-tagging jet-mass > 60 GeV


- Focusing on large H<sub>T</sub> region, boosted final state
- Use of most advanced substructure:
  - → HEPTopTagger
  - → subjet b-tagging (first time)
- Increase acceptance:
  - → ≥ 1 top-tag and ≥ 1 Higgs-tag
  - → ≥ 2 Higgs-tags as very signal-enriched event category

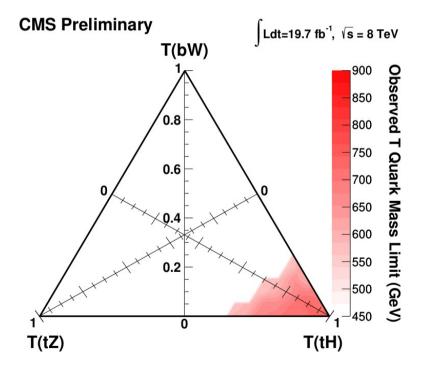

## Full Hadronic T→tH

#### [CMS-PAS-B2G-14-002]

- Use of substructure: QCD background reduced at the level of ttbar
- Two observables combined in Likelihood: H<sub>+</sub> and MHiggs
- ==1 and ≥2 Higgs-tags categories








## Full Hadronic T→tH

[CMS-PAS-B2G-14-002]

- Limits competitive with leptonic final states: obs. limit 747 GeV
- Doptimized for T→tH final state, but cross-section limits provided also for mixtures with T→tZ and T→bW decays



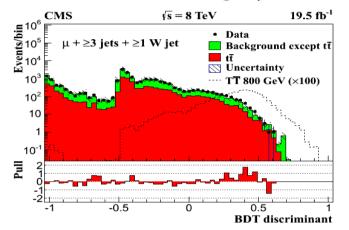


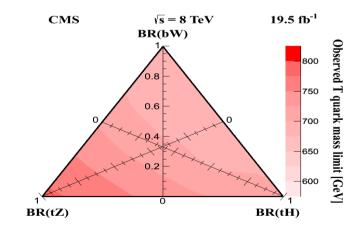
## T: Lep.+Jets and Multilept.

[Phys. Lett. B 729 (2014) 149]

#### **▶** Single lepton:

multivariate analaysis

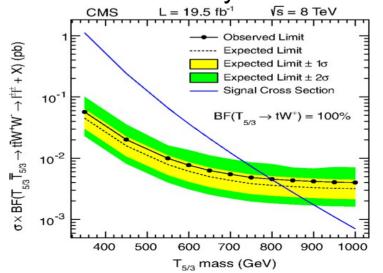

#### substructure

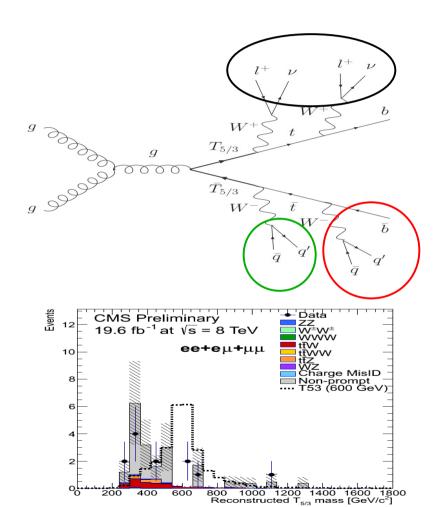

- two event categories: with or without W-tag
- top-tagging applied
- observables combined in BDT:
  - multiplicity/p<sub>T</sub> of reconstructed objects (lepton, jets, tagged jets...)
  - N of b-, W- and top-tags

#### Multilepton:

- → counting experiment
- → event categories:
  - two/three leptons
  - OS dilepton or SS

#### BDT discriminant, single $\mu$ channel




## **T5/3 Top Partners**

[Phys. Rev. Lett. 112 (2014) 171801]

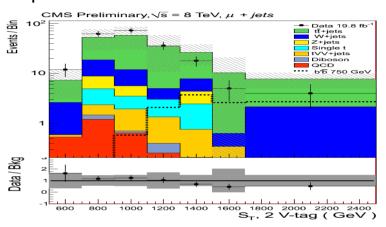
- Signal:
  - → pair-produced T with charge 5/3
  - → not contributing to Higgs coupling to gluons: not excluded by SM Higgs BR
  - → BR 100% **T**→**tW**
- Selection:
  - → two same sign leptons
  - → top-tagging
  - → W-tagging
- Limits from event yields: 800 GeV

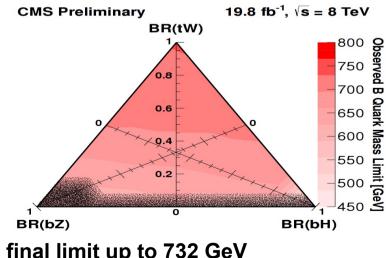




reconstruction of T mass from all channels

### **Bottom Partners: Lepton+Jets**


[CMS-PAS-B2G-12-019]

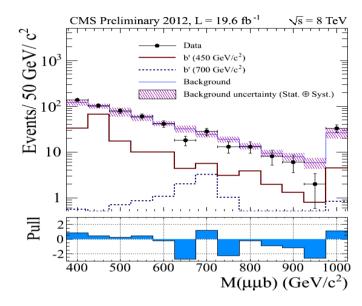

#### Selection:

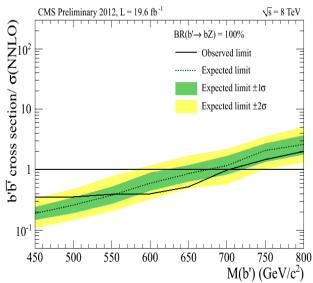
- → single muon or electron
- → ≥4 AK5 jets, ≥1 b-tagged
- → event categories based on number of Vtags (V=W/Z/H)
- ▶ Limits based on S<sub>+</sub> distribution:

$$S_{\tau} = p_{\tau}^{lept} + p_{\tau}^{miss} + \sum p_{\tau}^{jets}$$

#### S<sub>→</sub> distribution, for 2 V-tag category



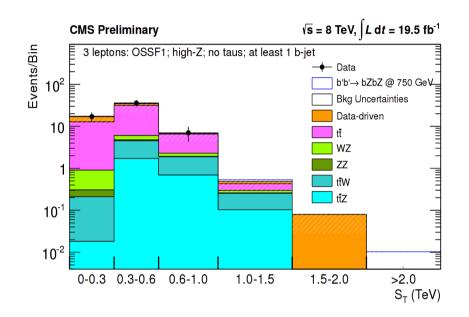


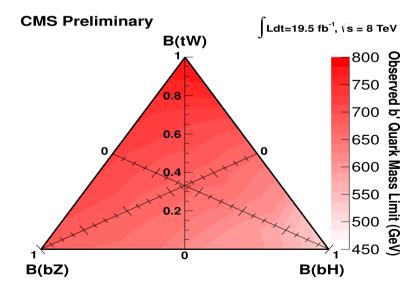


final limit up to 732 GeV

# Bottom Partners: Dilepton+Jets [CMS-PAS-B2G-12-021]

- Selection:
  - → OS leptons, from Z→I<sup>+</sup>I<sup>-</sup>
  - → 60 GeV < M<sub>||</sub> < 120 GeV
  - → p<sub>T</sub>(II)> 150 GeV
  - → 1 b-tag
  - $\rightarrow$  M<sub>B</sub> from Z $\rightarrow$ l<sup>+</sup>l<sup>-</sup>+high-p<sub>T</sub> b-jet

ightharpoonup obs(exp) limit B→bZ = 700 (680) GeV



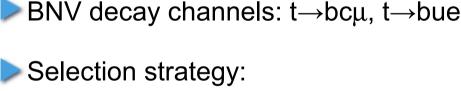




# Bottom Partners: Multilepton [CMS-PAS-B2G-13-003]

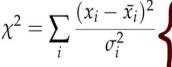
- Events categorized according to:
  - → number of OSSF lepton pairs
  - → if OSSF pair, whether on/off Z
  - → presence of hadronic tau candidates
  - → presence of b-tagged jets
  - → magnitude of ST

Limits between 520-785 GeV from counting experiment combining different categories

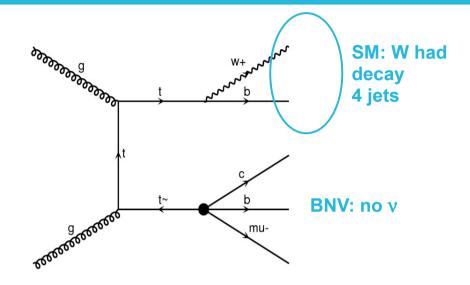


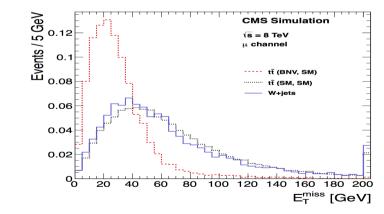



## **Other Searches with Tops**


### **Barion Number Violation**

[Physics Letters B 731 (2014) 173]


- Occurring in Susy, GUTs, black hole physics, ...
- Already studied in nucleons, mesons, tau, Z systems
- BNV decay channels: t→bcµ, t→bue




- → 1 isolated lepton (e, μ) → no E<sub>T</sub><sup>miss</sup>



⇒ ≥ 5 jets, ≥ 1 b-tag ⇒  $\chi^2$  < 20, where:  $\chi^2 = \sum_i \frac{(x_i - \bar{x_i})^2}{\sigma_i^2} \begin{cases} \text{BNV t-quark mass} \\ \text{Hadronic t-quark mass} \\ \text{W boson mass} \end{cases}$ 

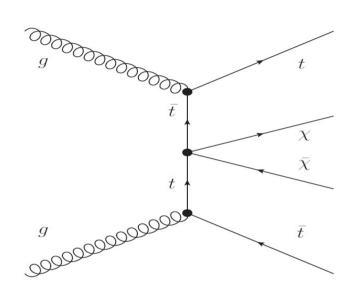


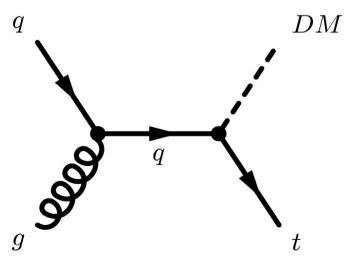


#### **BR** limits:

|              | 95% CL Upp. lim. | Exp. lim. | 68% exp. lim. range |
|--------------|------------------|-----------|---------------------|
| Muon ch.     | 0.0016           | 0.0029    | [0.0017, 0.0042]    |
| Electron ch. | 0.0017           | 0.0031    | [0.0018, 0.0045]    |
| Combined     | 0.0015           | 0.0029    | [0.0016, 0.0042]    |

### **Dark Matter Searches**


[CMS-PAS-B2G-13-004, CMS-PAS-B2G-12-022]


#### Di-lepton analysis

- → DM particle is a Dirac particle interacting with quarks via contact interaction
- → coupling proportional to quark mass: search in the top channel convenient!

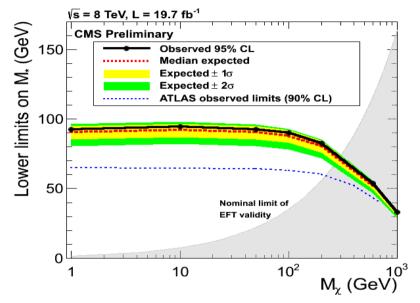
#### **▶** Monotop analysis

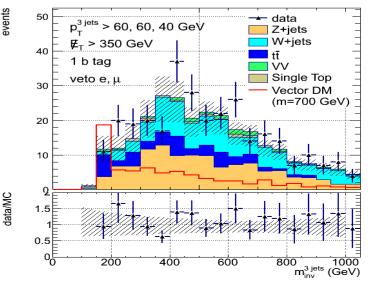
- → DM produced through FCNC diagrams
- → both vector or scalar DM boson possible: limits for both options
- → no monojet event observed: DM particle may couple to third generation quarks!





### **Dark Matter Searches**

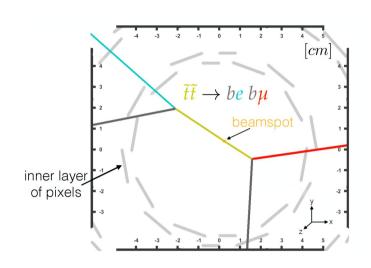

[CMS-PAS-B2G-13-004, CMS-PAS-B2G-12-022]

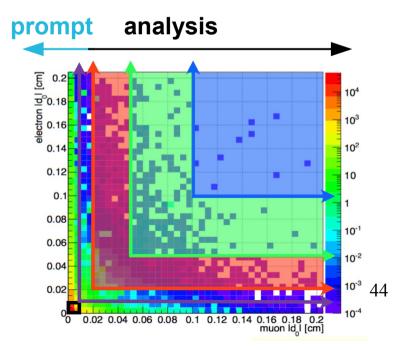

#### Di-lepton analysis

- → two leptons, ≥ 2 jets
- → ET<sup>miss</sup> > 320 GeV
- → Σp<sub>T</sub> leading jets < 400 GeV (agains tt)
- → m<sub><sub>11</sub> > 20 GeV, |m<sub>11</sub> -91| < 15 GeV (against DY)</sub>
- →  $\sum p_{T}$  leptons > 120 GeV,  $\Delta \phi_{II}$  < 2
- → limits on the interaction scale M<sub>\*</sub>

#### Monotop analysis

- → hadronic top: ==3 jets, M<sub>jjj</sub><250 GeV
- → 1 b-tag, no isolated leptons (e, μ)
- → data-driven backgrounds:
  - QCD: 0 b-tag sample
  - W+jets, Z+jets: isolated muons
- → M<sub>DM</sub> limit: 327 GeV (scalar), 655 GeV (vector)



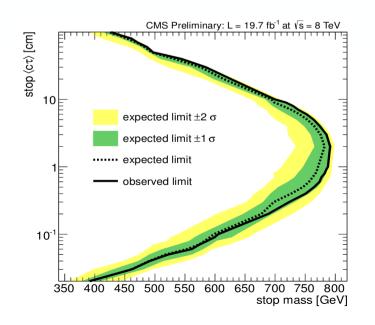




## **Displaced Superymmetry**

[CMS-PAS-B2G-12-024, theory arXiv:1204.6038v1]

- Typical searches for non-prompt signatures focus on very long lifetimes: here (ct) ~100 µm - 1 cm
- General search:
  - → selections on leptons
  - → no selections aimed at jets, MET, btagging
  - → interpretation: RPV long-lived LSP stop
- Event selection:
  - → muon trigger
  - → good quality, OS, isolated e, μ pair
- ► ⟨cτ⟩ correlates to impact parameter |d<sub>0</sub>|
  - → signal regions : 200μm<|d<sub>0</sub>|<2cm
  - → control regions : |d<sub>0</sub>|< or >100μm
- QCD data-driven estimation from SS/antiisolated regions






### **Displaced Superymmetry**

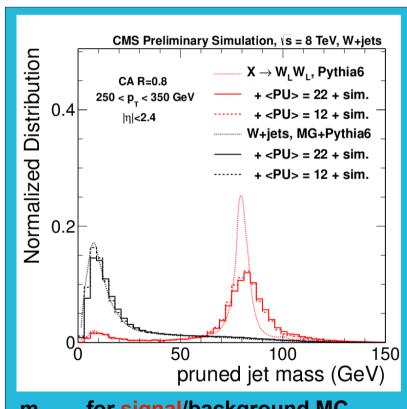
[CMS-PAS-B2G-12-024, theory arXiv:1204.6038v1]

Very pure signal regions:

|                                                              | $0.02 \mathrm{cm} <  d_0  < 0.05 \mathrm{cm}$ | $0.05 \text{ cm} <  d_0  < 0.1 \text{ cm}$ | $ d_0  > 0.1 \text{ cm}$    |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------|
| Total expected background                                    | $18.0 \pm 0.5 \pm 3.8$                        | $1.01 \pm 0.06 \pm 0.30$                   | $0.051 \pm 0.015 \pm 0.010$ |
| Observation                                                  | 19                                            | 0                                          | 0                           |
|                                                              |                                               |                                            |                             |
| $M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ mm}$  | $30.1 \pm 0.7 \pm 1.1$                        | $6.54 \pm 0.34 \pm 0.24$                   | $1.34 \pm 0.15 \pm 0.05$    |
| $M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ cm}$  | $35.3 \pm 0.8 \pm 1.3$                        | $30.3 \pm 0.7 \pm 1.1$                     | $51.3 \pm 1.0 \pm 1.9$      |
| $M = 500 \text{ GeV}, \langle c\tau \rangle = 10 \text{ cm}$ | $4.73 \pm 0.30 \pm 0.17$                      | $5.57 \pm 0.32 \pm 0.20$                   | $26.27 \pm 0.70 \pm 0.93$   |



dominant region


- Excellent exclusion limits for optimized ⟨cτ⟩ region
- Limitiations:
  - → short ⟨cτ⟩: prompt backgrounds
  - → long ⟨cτ⟩: signal acceptance

# W-Tagging [CMS-PAS-JME-13-006]

- ▶ Based on jet mass pruning (Ellis, Vermillion, Walsh [arXiv:0903.5081], [CMS-PAS-SMP-12-019]): remove soft clusters.
- Starting with Cambridge-Aachen jets, distance parameter 0.8 (CA8).
- Recluster jet and apply requirements when merging clusters *i* and *j* into cluster *p*. Veto soft and large angle recombinations, removing softer cluster if:
  - $\rightarrow z = min(p_T^{i}, p_T^{j})/p_T^{p} < 0.1$
  - $\rightarrow \Delta R^{ij} > D_{cut} = 0.5 \times m^{orig} / p_T^{orig}$ .

#### W-tagging:

- •2 pruned subjets
- pruned jet mass [60,100] GeV



m<sub>pruned</sub> for signal/background MC with/without detector effects, pile-up

- Pruning can be combined with additional observables:
  - → mass-drop

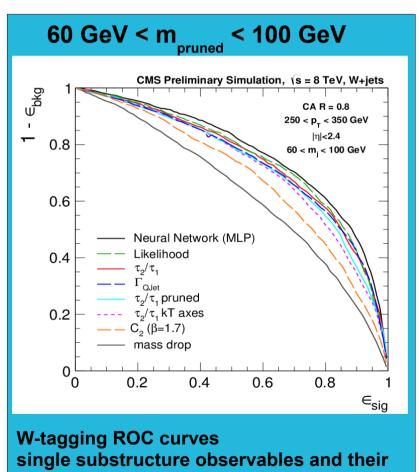
mass-drop  $\mu = m_1/m_{jet}$  $m_1$  is the highest mass pruned subjet

- Pruning can be combined with additional observables:
  - → mass-drop
  - → N-subjettiness  $\tau_N$ :  $\tau_2/\tau_1$  used for W-

tagging

probability that jet is composed by N subjets

$$\tau_{N} = \frac{1}{d_0} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$$


 $d_0 = \sum_k p_{T,k} R_0$ , and  $R_0$  is the original jet radius

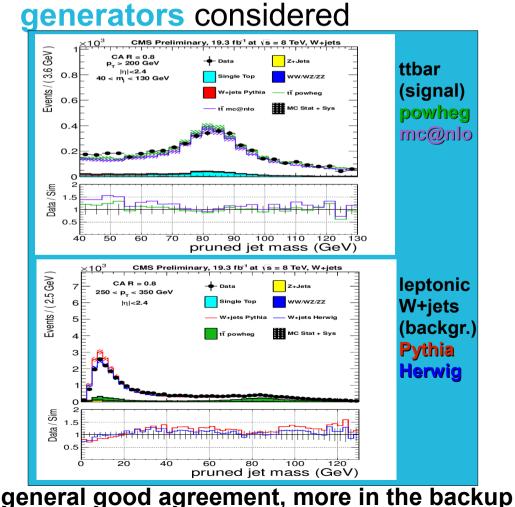
Pruning can be combined with additional observables:

- → mass-drop
- → N-subjettiness  $\tau_N$ :  $\tau_2/\tau_1$  used for W-tagging
- → also examined: Qjet volatility Γ<sub>QJet</sub>, generalized energy correlation function C<sub>2</sub><sup>β</sup>

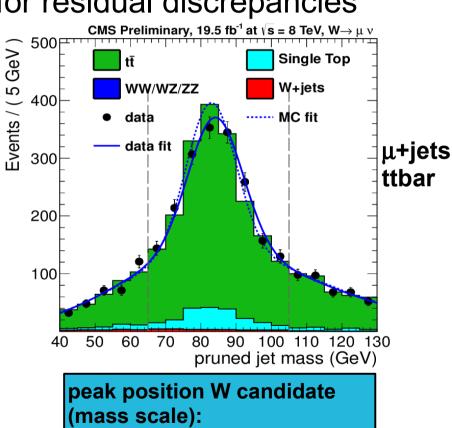
Pruning can be combined with additional observables:

- → mass-drop
- → N-subjettiness  $\tau_N$ :  $\tau_2/\tau_1$  used for Wtagging
- → also examined: Qjet volatility Γ<sub>OJet</sub>, generalized energy correlation function  $C_{\alpha}^{\beta}$
- N-subjettiness shows the best single discriminating power.
- Observables are correlated: moderate improvement with multivariate combination.




combinations

efficiency:  $H\rightarrow WW$ ,  $m_{\perp} = 600 \text{ GeV}^{50}$ 


mistag: QCD

### W-Tagging: MC vs Data

- Detailed data/MC comparisons for all subtructure observables
- **▶** Different topologies and



Scale factors (SF) to correct for residual discrepancies



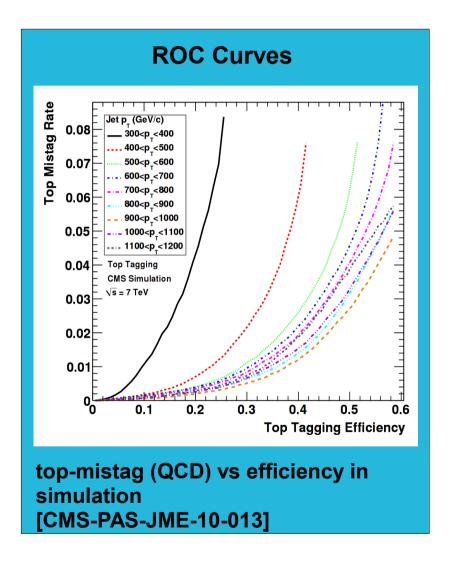
peak position W candidate (mass scale):
•data: 84.5 $\pm$ 0.4 GeV
•MC: 83.4 $\pm$ 0.4 GeV

SF (m<sub>pruned</sub> cut +  $\tau_2/\tau_1$ <0.5):
•0.905  $\pm$  0.08

## **Top-Tagging**

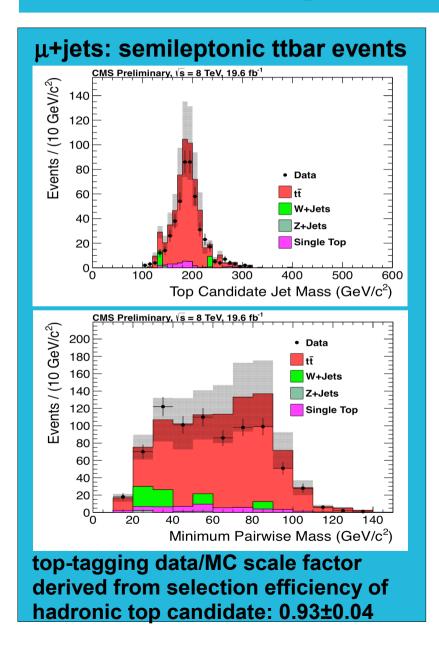
- ► Based on JHU top-tagger (Kaplan et al [PRL 101 (2008) 142001]):
- → start with CA8 jets
- → reverse clustering sequence and examine clusters pairwise
- → clusters are **splitted** if:

$$\Delta R > 0.4 - 0.0004 \times p_{\tau}^{C}$$


 $p_{_{\!\scriptscriptstyle T}}^{^{\phantom{T}}}$  is the parent cluster  $p_{_{\!\scriptscriptstyle T}}$ 

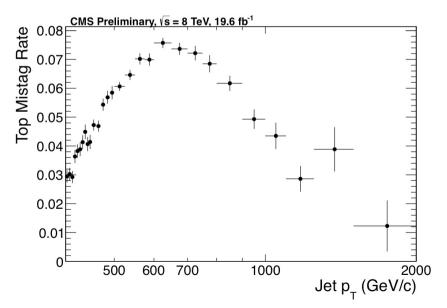
→ low p<sub>T</sub> clusters removed if:

$$p_{T} < 0.05 \times p_{T}^{jet}$$
.


#### **Top-tagger requirements:**

- •140<m<sub>iet</sub><250 GeV
- •N<sub>subjets</sub> ≥ 3
- •Min pairwise mass > 50 GeV




### **Performance**

[CMS-PAS-B2G-12-005]



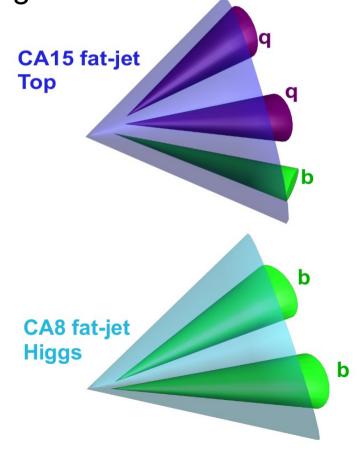
**Mistag** rate can be measured from data, using **anti-tag method**:

- → two high-p<sub>T</sub> jets, p<sub>T</sub> >400 GeV
- → anti-tag one jet, inverting min pairwise mass requirement
- → top-tag of other jet is a mistag



# B-Tagging in Boosted Topologies [CMS-PAS-BTV-13-001]

▶ B-tagging at CMS traditionally developed on isolated AK5 jets (anti-k<sub>T</sub>, R=0.5), mostly suitable for the non-boosted regime.


The work now presented is the first study at LHC dedicated to btagging in the boosted regime. Two topologies considered:

**Boosted top, hadronic decay:** 

→top decay selected usingHEPTopTagger [JHEP 1010 (2010)078], based on CA15 jet collection

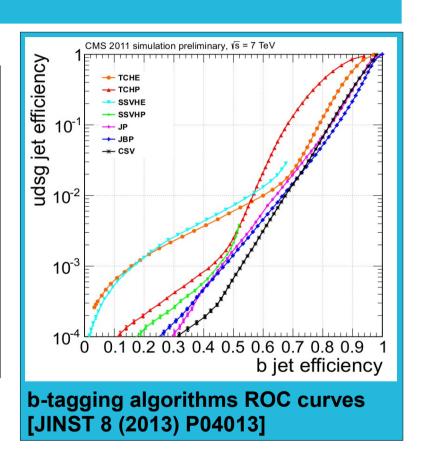
#### **Boosted Higgs**→**b5**:

→2 b-jets clustered together in large fat-jet
→studies based on CA8 collection



### **B-Quark Signatures**

**Life-time b-hadron** → **jets with:** 


- secondary vertex
- tracks with large impact parameter

Large mass, ~5 GeV

**Fragmentation function:** 

•high  $p_{T}$  of the b-hadron relatively to jet  $p_{T}$ 

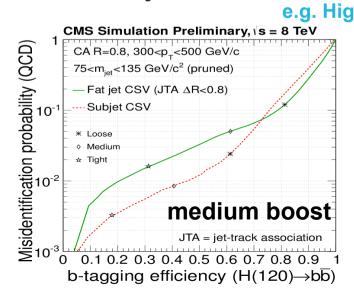
B-decay produces often leptons: soft muon or electron within jet

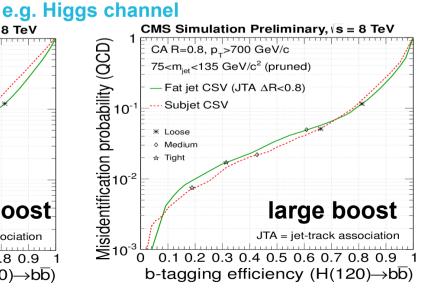


- Several taggers implemented at CMS. Boosted studies based on the Combined Secondary Vertex CSV tagger:
  - → likelihood ratio combination of secondary vertex + single track information;
  - → currently the best tagger in CMS, improvements ongoing.

## **Boosted B-Tagging Scenarios**

- Different scenarios considered for boosted topologies:
  - → subjet CSV:
    - CSV b-tagger applied to subjets
       (2 b-tags for Higgs-tagging, ≥1 for top-tagging)
  - → fat-jet CSV:
    - CSV b-tagger applied to the Higgs/top candidate fat-jet


subjet b-tagging: fat-jet b-tagging: based on subjet tracks


fat-jet b-tagging: based on all fat-jet tracks

Subjet b-tagging generally performs better: chosen as default technique

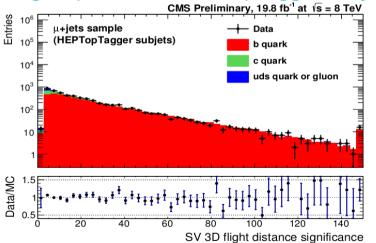
Fat-jet b-tagging suitable at very high  $p_T$  where subjets start to

merge



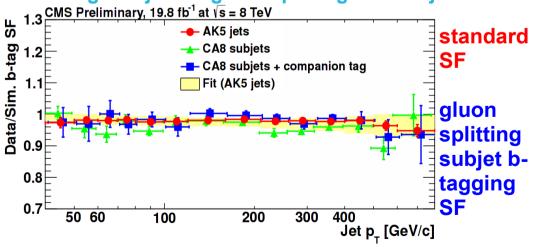


## Subjet B-Tagging Validation on Data


#### **Control sample boosted top:**

- μ+jets, semileptonic ttbar
- → HEPTopTagger to select hadronic decay

#### Boosted Higgs: challenging definition of the control sample


- → similar topology: **gluon splitting jets**, two closeby b's
- → selection: high p<sub>T</sub> CA8 jet with 2 pruned subjets
- → enrich in gluon-splitting requiring soft-muon within subjets cone

#### e.g. Top channel, HEPTopTagger subjets



- Good data/MC agreement for b-tagging observables.
- •All observables cross-checked (backup).

e.g. subjets of gluon splitting CA8 fat-jets



- •SF~1, compatibly with SF for standard b-tagging in the non-boosted regime, for both channels. 57
- Nothing pathological in the boosted regime.