

Diffraction, forward physics and soft QCD results from CMS

on behalf of the CMS collaboration

LHCP 2014, The Second Annual Conference on Large Hadron Collider Physics 2-6 June 2014, New York City, USA

Recent CMS results on:

- Diffractive cross sections
- Inclusive measurements at low pT
- Forward inclusive jet cross section
- Forward-central jets
- Forward-backward (Mueller-Navelet, MN) jets
- Four-jet cross section and Double Parton Scattering (DPS)
- DPS with W+2jets
- DY+jets

Soft diffractive cross sections

DD cross section with central LRG

DD cross section integrated over $\Delta\eta$ > 3, M_x>10 GeV, M_y>10 GeV:

 $\sigma^{\text{DD}}_{\text{vis}}$ = 0.93 ± 0.01 (stat.) $^{+0.26}_{-0.22}$ (syst.) mb

PYTHIA8-MBR with $\varepsilon{=}0.08$ (Minimum-Bias Rockefeller, developed and tested at CDF) describes the measured SD and DD cross sections well

PYTHIA8-4C and PYTHIA6 describe well the DD cross section, but fail to describe falling behavior of SD data

SD cross section integrated over

$$12 < M_x < 394$$
 GeV:
 $\sigma_{vis}^{SD} = 4.27 \pm 0.04$ (stat.) $^{+0.65}_{-0.58}$ (syst.) mb

Multiplied by 2 to account for both $pp \to pX$ and $pp \to Xp$ processes.

consistent with TOTEM result

Central and forward $dN_{ch}/d\eta$

CMS+TOTEM low-pileup 2012 run @8TeV, high β^* optics Minimum Bias trigger provided by TOTEM T2 telescopes (5.3<| η |<6.5) Events categorized into 3 samples: Inclusive – activity in T2 NSD-enhanced – activity in each of T2 (both z+ and z- sides)

SD-enhanced – activity in only one T2 (z+ or z- side)

CERN-PH-EP-2014-063

arXiv:1405.0722

Multiplicity of SD events significantly smaller than NSD No prediction able to describe $dN_{ch}/d\eta$ for all the samples in the entire η range Data can help constrain modelling of hadronic final state and diffractive scattering

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

<u>Leading charged particle and leading</u> jet cross sections at small p₋

 CMS-PAS-FSQ-12-032 Common CMS+TOTEM run

Normalized integrated leading charged particle and <u>leading charge-particle jet cross sections</u>

No MC model able to reproduce the data, EPOS provides the best description Input for MC tunes, sensitive to regularization of partonic cross section at $low-p_{\tau}$

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

Inclusive jet cross section

Combined low-pileup runs (Summer 2012) and full 2012 dataset.

CMS-PAS-FSQ-12-031 CMS-PAS-SMP-12-012 21 < jet p₇< 74 GeV *jet p_> 74 GeV* pp √s = 8 TeV **CMS** Preliminary 10¹³ open: $L_{...} = 5.8 \text{ pb}^{-1}$ (low PU runs) рþ GeV filled: L_{int} = 10.71 fb⁻¹ (high PU runs) − NNPDF 2.1 NLO⊗NP $\frac{d^2\sigma}{dp_{\tau}dy}$ 10⁵ 10^{3} - 0.0 <|y|< 0.5 (× 10⁵ 10 -- 0.5 <|y|< 1.0 (× 10 → 1.0 <|y|< 1.5 (× 10) 10⁻¹ -**▼** 1.5 <|y|< 2.0 (× 10⁴ \rightarrow 2.0 < |y| < 2.5 (× 10¹ 10⁻³ - 2.5 < |y| < 3.0 (× 10⁰

Inclusive data are well described in a wide range of p_T and rapidities by NLO \otimes NP theory predictions

200

1000

Jet p_T [GeV/c]

2000

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

10⁻⁵

→ 3.2 <|y|< 4.7 (× 10⁻¹

100

Forward-central jet azimuthal correlations

At least two jets with p_> 35 GeV, central: $|\eta| < 2.8$, forward: 3.2< $|\eta| < 4.7$

 $\Delta \eta < 7.5$ opens up phase space for additional radiation (PS and MPI) Study azimuthal $\Delta \phi$ (de)correlations (also in two bins of $\Delta \eta$, and with or w/o additional jet of p₁> 20 GeV, not shown)

CMS-PAS-FSQ-12-008

Theory predictions (PYTHIA6, PYTHIA8, HERWIG6, HERWIG++) describe the data within uncert. PYTHIA6 w/o MPI is below data at low $\Delta \phi$. HERWIG++ describes the measurement best.

Mullet-Navelet di-jet decorrelation

Most forward and backward jets with $p_T > 35$ GeV, $|\eta| < 4.7$ $\Delta \phi$ between jets in bins of Δy

Decorrelation increases with rapidity separation DGLAP models give reasonable description of data:

- PYTHIA6/PYTHIA8 show too strong decorrelation
- SHERPA underestimates decorrelation
- HERWIG++ is consistent with the data

LL BFKL-inspired CASCADE predicts too strong decorrelations NLL BFKL consistent with average cosine ratios \rightarrow

 $C_n = \langle \cos(n(\pi - \Delta \phi)) \rangle$

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

4-jet production

Leading jets $p_T > 50$ GeV,soft jets $p_T > 30$ GeV; $|\eta| < 4.7$

 $\sigma(pp \rightarrow 4j + X) = 330 \pm 5 \text{ (stat.)} \pm 45 \text{ (syst.)} \text{ nb}$

Theory predictions (SHERPA, POMWEG, MADGRAPH, PYTHIA8) are able to describe the differential cross sections only in some regions of phase space. Discrepancies at lower p_{τ} for subleading and soft jets.

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

CERN-PH-EP/2013-229

arXiv:1312.6440

4-jet production, DPS

The 2 additional jets may be produced by parton showers or a second hard scattering. Access to DPS! Discriminate between SPS and DPS by studying:

- Δ_{soft}^{rel} transverse momentum balance of two soft jets (DPS around 0)
- ΔS azimuthal angle between two di-jet pairs (DPS flat)

CERN-PH-EP/2013-229

arXiv:1312.6440

 $\label{eq:scalarses} \begin{array}{l} \hline \mbox{Valuable input for MPI tunes} \\ \mbox{Recent tune to 4j DPS gives} \\ \sigma_{\rm eff} = 21.3^{+1.2} & \mbox{mb,} \\ \mbox{compared to } \sigma_{\rm eff} \sim 30 & \mbox{mb of} \\ \mbox{PYTHIA8-4C and UE tunes} \end{array}$

CMS-PAS-GEN-14-001

No significant differences between theory predictions POMWEG without MPI is far below data at low $\Delta^{rel}_{soft}p_T$ and ΔS SHERPA and PYTHIA8 give the best description of ΔS

DPS with W+2jet events

JHEP 03 (2014) 032

arXiv:1312.5729

Discriminate DPS W+2jet (W+0jet and dijets) from SPS W+2jet with:

- $\Delta^{\text{rel}} \textbf{p}_{_{T}}$ - transverse momentum balance of two jets

- ΔS - azimuthal angle between W and di-jet system

Fully-corrected data fitted with DPS and SPS templates (MC based, MADGRAPH5+PYTHIA8)to extract DPS fraction $f_{\text{DPS}} = 0.055 \pm 0.002 \, (\text{stat.}) \pm 0.014 \, (\text{syst.})$ 11

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

DPS with W+2jet events

Measurement consistent with ATLAS, CDF and D0 results Large uncertainties, difficult to conclude on energy dependence of $\sigma_{_{eff}}$ PYTHIA8: $\sigma_{_{eff}} \sim 20-30$ mb, tune dependent

Di-muons with pT>20(10) GeV, $|\eta|{<}2.1(2.4)$ jets with pT>30 GeV, $|\eta|{<}4.5$

CMS-PAS-FSQ-13-003

Double-differentially in $m^{\mu\mu}$ and $p_{_{\!\!\!\!\!\!\!\!}}^{~\mu\mu}$

DY – maximum at 5 GeV, below non-perturbative and pert. soft gluon emissions
 DY+jets – maximum shifted to higher value (~30 GeV), perturbative soft gluon emissions
 → Test of gluon ressumation in perturbative regime

PYTHIA6(lowest order in α_s) predicts too low cross section at low $p_T^{\mu\mu}$ MADGRAPH(N <4 ME)+PYTHIA6 describes the data best

R. Ciesielski, Diffraction, forward physics and soft QCD results from CMS, LHCP 2014

Recent CMS results on diffraction, soft QCD and forward physics presented

Abundant source of data to test and help improve theory predictions

Need for better modelling of MPI and MC tuning

Access to hard DPS

No evidence for new QCD parton dynamics

More measurements to come. Check the latest CMS results at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Thank you for your attention!

Forward-rapidity gap cross section

Hadron-level comparison of the forward rapidity gap cross section to predictions of PYTHIA8-MBR (ϵ =0.08 and ϵ =0.104), PYTHIA8-4C and PYTHIA6-Z2* simulations.

Exponentially falling ND contribution dominant for $\Delta \eta^{F}$ <3, above this value cross section weakly changing with $\Delta \eta^{F}$:

Sensitivity to model dependence. PYTHIA8-MBR (ϵ =0.08) – best description within uncertainties.

Powere CONS

Forward-rapidity gap cross section

Comparison to the ATLAS measurement (EPJ C72 (2012) 1926).

Different hadron level definition: $|\eta| < 4.7$ (CMS) vs $|\eta| < 4.9$ (ATLAS) – up to 5% effect. Different MC sample used for unfolding – ~10% effect. Agreement with ATLAS within uncertainties. CMS extends the ATLAS measurement by 0.4 unit of gap size.

Forward jet cross section

All predictions agree with data within the uncertainties (dominant: JES unc. < 45%)

Inclusive jet production is well described by theory predictions in wide range of p_{τ} and rapidities

DPS with W+2jet events

JHEP 03 (2014) 032

Normalized distributions compared to theory predictions.

arXiv:1312.5729

MADGRAPH+PYTHIA8 and POMWEG+PYTHIA6 give a good description of the data, both of them fail in absence of MPI PYTHIA8 fails to describe the data (missing higher order processes)