geometric theory of flavor, 126 GeV scalar and the 100 TeV collider

Amarjit Soni; HET-BNL
LHC Physics Conference
Columbia Univ, 6/5/14
4th of July 2012 Fireworks!

• LHC makes **TWO (not one)** huge discoveries

• => “Higgs” 126GeV

• => Nothing else till 1-2 TeV

• Particle Physics in Disarray!!
We, as “members of a curious species [that] have dedicated their lives and fortunes to the search for their origin in a dark universe” (NYT, July 4, 2012) are proud of the discovery of the Higgs boson.
Overview of current results

Huge amount of results, only a selection shown above

Red lines along a limit indicates 8TeV data

Florian Bauer - IRFU - CEA Saclay 8th Rencontre du Vietnam - 17/12/2012
For further details....

• Talk is primarily based on recent arXives:
 • 1405.2924 (Bar-Shalom and Jose Wudka);
 • 1312.3331 (with Michael Geller and Bar-Shalom); PRD May 2014 and
 • 1303.5056

• also several talks, in particular,
 • FPCP 2012, Hefei China, May 2012..

[1st started talking on 100 TeV Collider..]
Main points

• Aftermath of 126 GeV scalar: What’s the scale of NP?

• What are its experimental ramifications for IF & HF

[Most of the talk from the perspective of a CANDIDATE theory of flavor & then some model independent]
One central message

• From the vantage point of flavor scale of NP was not expected to be ~ 1 TeV

• It's not clear what physical principle says that we need just worry about experimental constraints (say) from EWP data & disregard K^0 mixing, ε_K

Flavor is not a footprint and, in particular, flavor-alignment is a serious issue
FITS LIKE A GLOVE!
[OR DOES IT?]
ATLAS Preliminary

<table>
<thead>
<tr>
<th>Process</th>
<th>\sqrt{s} = 7 TeV</th>
<th>\sqrt{s} = 8 TeV</th>
<th>L_{int} (fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W, Z \to b \bar{b}$</td>
<td>$L_{\text{int}} = 4.7$ fb$^{-1}$</td>
<td>$L_{\text{int}} = 13$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to \tau^+ \tau^-$</td>
<td>$L_{\text{int}} = 4.6$ fb$^{-1}$</td>
<td>$L_{\text{int}} = 13$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to WW^{(*)} \to 4l$</td>
<td>$L_{\text{int}} = 4.6$ fb$^{-1}$</td>
<td>$L_{\text{int}} = 20.7$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to \gamma\gamma$</td>
<td>$L_{\text{int}} = 4.8$ fb$^{-1}$</td>
<td>$L_{\text{int}} = 20.7$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$H \to ZZ^{(*)} \to 4l$</td>
<td>$L_{\text{int}} = 4.6$ fb$^{-1}$</td>
<td>$L_{\text{int}} = 20.7$ fb$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

Combined

$\mu = 1.30 \pm 0.20$

$L_{\text{int}} = 4.6 - 4.8$ fb$^{-1}$

$L_{\text{int}} = 13 - 20.7$ fb$^{-1}$

CMS Preliminary

$\mu = 0.80 \pm 0.14$

$\mu = 0.80 \pm 0.14$

Theory errors

ERRORS LIKELY UNDERESTIMATED

$h \to gg$??
SM-CKM paradigm works rather well.
No glaring discrepancy
OTOH tests only $\sim 10-15\%$ accuracy

126 GeV; warped flavor & 100 TeV
A. Soni HET-BNL

see also http://www.utfit.org

T. Gershon
CBF2013
FIG. 15. Experimental cross sections at two energies compared with a simple $1/m^5$ continuum.
Drawing strong conclusions based on 20% tests is too risky!!

Buried underneath the current errors in the Higgs measurements may well be gems of NP!!

[EC Later]
SHOULD WE BE SHOCKED TO FIND THAT THE SCALE OF NEW PHYSICS IS NOT ~ 1 TEV & APPEARS TO BE HIGHER?
Outstanding Th.puzzles of our times

- Hierarchy puzzle

For radiative stability of $m_H \Rightarrow \Lambda_{NP} \lesssim \text{TeV}$ to avoid fine tuning m_H.

- Flavor puzzle

$\Delta_{flav}=2$ esp. $K-L\bar{K}$

Huge Tension

$\sim \frac{g^2_{NP}}{\Lambda_{NP}^2} \Rightarrow \Lambda_{NP} \gtrsim 10^3 \text{TeV}$ to avoid constraint from $\Delta M_K, \epsilon_K$.

126 GeV; warped flavor & 100 TeV

Soni HET-BNL
INSIGHTS FROM A (CANDIDATE) GEOMETRIC THEORY OF HIERARCHY & FLAVOR
GOOD NEWS IS ACTUALLY
AWESOME NEWS!!

GELLER, BAR-SHALOM + A.S.

1312.3331; PRD 2014

A fascinating interpretation of the 126
GeV scalar in RS:
Geller, Bar-Shalom + AS (starting point)

• Ask: Can the Higgs doublet simultaneously break EW symmetry as well as stabilize 5^{th} dim-radius

• Answer Yes!

• Therefore minimal model whereas with traditional Goldberger – Wise you need to have an additional scalar ("Radion")

• With our set up instead there is only the Higgs doublet: “Higgs-radion” serving a dual purpose
Is the scalar 126 GeV the GW Radion?

• Recall in the RS set up the famous Goldberger-Wise mechanism (‘99) is invoked to stabilize the the 5th dim: needs a scalar field, “Radion”
• The mass of the radion is (may be?) parametrically suppressed compared to the KK scale; therefore radion
• Expected to be the lightest RS particle..focus of attention
• Quantum numbers identical to the higgs
• Numerous studies to see if 126 GeV object is the GW radion: NO as then KK-scale needs to be ~ 1 TeV to fit the data which is ruled out by direct searches [see e.g. Z. Chacko et al; Csaki et al; Low et al........]
A new proposal: Stabilization of the 5th dim by the Higgs doublet

- Higgs in the bulk-
 Can the Higgs VEV also simultaneously give mass to the radion?
 [if so it’d be more economical]
 Is it phenomenologically viable?

- Potential difficulty
 The higgs has to be close the TeV brane (for m_EW \sim O(100 GeV))

- In the GW case the scalar is almost flat:
Note that tuning of the C.C is needed just as in the GW case
“Higgs-radion”

- Confrontation with all the existing LHC data shows that properties all consistent with the SM Higgs [SMH] so far
- However BR -> 2 gamma and into 2 gluons appreciably different from SMH (see Table)
- Gives a crucial hint on the scale of NP
- \(K_{kgluon} \text{ mass lies between 4.5 and 5.4 TeV! (95\%CL fit to existing data) } \)
- [Note: this is completely data driven => for sure LHC13 with 100/fb will change these]
E II: The Higgs-radion and the SM Higgs branching ratios and total width. The SM values given from [33].

<table>
<thead>
<tr>
<th></th>
<th>SM ($m_h = 126$ GeV)</th>
<th>Higgs-Radion ($m_{hr} = 126$ GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Br(h \rightarrow WW^*)$</td>
<td>0.231</td>
<td>0.204</td>
</tr>
<tr>
<td>$Br(h \rightarrow ZZ^*)$</td>
<td>0.0289</td>
<td>0.0257</td>
</tr>
<tr>
<td>$Br(h \rightarrow gg)$</td>
<td>0.0848</td>
<td>0.13</td>
</tr>
<tr>
<td>$Br(h \rightarrow \gamma\gamma)$</td>
<td>$2.28 \cdot 10^{-3}$</td>
<td>$3.8 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Br(h \rightarrow b\bar{b})$</td>
<td>0.561</td>
<td>0.545</td>
</tr>
<tr>
<td>$Br(h \rightarrow \tau\bar{\tau})$</td>
<td>0.0615</td>
<td>0.063</td>
</tr>
<tr>
<td>$Br(h \rightarrow c\bar{c})$</td>
<td>0.0283</td>
<td>0.028</td>
</tr>
<tr>
<td>Total width [GeV]</td>
<td>$4.21 \cdot 10^{-3}$</td>
<td>$2.2 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>

CAUTION: Effects of KK tower not included yet.
A promising ratio that needs special attention

• From the above BRs, a ratio that seems particularly sensitive to higgs-radion interpretation is

\[
\frac{\mu_{\gamma\gamma}^{ggF}}{\mu_{VV}^{VH}} / \mu_{\mu}^{bb} \sim 2.5.
\]

In contrast in the SM it is \(\sim 1\)
Summary so far

- When examined in greater detail, it may well be that the scalar at 126 GeV observed by the LHC is actually not the Higgs of the SM but rather a “Higgs-radion” from the RS-setup hinting of KK-zoo above ~5 TeV.
THE FLAVOR CONNECTION
Figure 1: Warped geometry with flavor from fermion localization. The Higgs field resides on the TeV-brane. The size of the extra dimension is $\pi r_c \sim M_p^{-1}$.

Simultaneous resolution to hierarchy and flavor puzzles

126 GeV; warped flavor & 100 TeV

A. Soni HET-BNL
Fermion “geography” (localization) naturally explains:

- Why they are light (or heavy)
- FCNC for light quarks are severely suppressed automatically
- RS-GIM MECHANISM (Agashe, Perez, AS’04) flavor changing transitions though at the tree level (resulting from rotation from interaction to mass basis) are suppressed roughly to the same level as the loop in SM=> CKM mixings (& mass) hierarchy.
- $O(1)$ CP ubiquitous; nedm, in fact ALL DIR-CP [ε'/ε, γ, $\Delta ACP(B=>K\pi), \Delta(Sin2\beta); S[B=>K^* \rho\gamma]; \Delta ACP(D) ..]$ are an exceedingly important path to BSM-phase and new physics
- Most flavor violations are driven by the top
- \rightarrow ENHANCED $t->cZ(h)$A VERY IMPORTANT “GENERIC” PREDICTION..Agashe, Perez, AS’06

$\varepsilon_K, \Delta m_K : 10^3$ TeV \Rightarrow RS$_{Fe}$ \sim 10 TeV!

EXTENSIVE STUDIES by Blanke et al and by Cassagrande et al &........
KK-scale from flavor constraints

• 10 TeV lower bound is a crude estimate
• Whereas 4-5 TeV suggested by ATLAS+CMS data on Higgs properties
• Both #s have considerable uncertainties
• Once KK-scale ~10 TeV custodial symm and the particle additions it entails may not be needed.
Why no NP signals at \(\sim 1 \text{TeV} \)?

- Thus, from the perspective of RS, the absence of signals so far may well be because RS comes with flavor; after all geometrical understanding of flavor is the key attraction of RS.
Bottom line is that from a variety of considerations tuning $O(10^{-3})$ may be needed but even so this is a far far cry from 10^{-34}!

$=>$ Naturalness is not at stake; at least not now

$$\frac{v^2}{100 \text{ TeV}} \sim 1/1600$$

126 GeV; warped flavor & 100 TeV
Soni HET-BNL A.
Is Nature Unnatural?
Decades of confounding experiments have physicists considering a startling possibility: The universe might not make sense.
by: Natalie Wolchover
May 24, 2013

Gee, don’t see no NP signals
Flavor: Told you so!
Because the scale of NP ~ 10 TeV, expected deviations tend to be very small, strongly suggesting we need to strengthen both our computational AND measurement infrastructure.
KEY MESSAGES FROM A CANDIDATE THEORY OF FLAVOR
1. In a candidate theory, the gigantic tension between hierarchy and flavor puzzle gets dramatically ameliorated. Thus remarkably RS-leads to lowering of Λ_{flavor} from ~ 1000 to ~ 10 TeV. **Beat them to Death!**

II. Due to flavor mis-alignment, $O(1)$ BSM phases occur naturally; \Rightarrow direct CP is an extremely powerful probe of flavor alignment and holds the key to unlocking new physics.

For this purpose, RS flavor [APS '04] suggests fortunately, there are many observables: Nedm, ϵ'/ϵ; γ γ $[B \rightarrow K^* (\rho)\gamma]$, DCP in BSM modes,...but expected signals tend to be small (for 10 TeV) necessitating high precision.
Beat them to Death!

• III Top quark edm may be non-vanishing and its measurement deserves special attention
 Atwood et al PR100; Kamemik et al 1/13

• IV Top quark is very sensitive to flavor violation;
 t => c Z; t => c h, pp => t c h X etc need to be vigorously pursued.

126 GeV; warped flavor & 100 TeV
A. Soni HET-BNL
VI. Expected size of corrections to Higgs couplings

• Deviation from SM ~ O(ν^2/ m_{KK}^2) ~ 0.3%
 [assuming m_{KK} > ~ 5 TeV].
Such small corrections should be a concern

• VI. Once m_{KKg} > 3 TeV, LHC14 CANNOT See KK
Or EFT Zoo

• VIII. For direct observation of (KK)particles of mass
> ~ 10 TeV need a Gigantic International Hadron
Collider (GIHC) ~ 100 TeV cm energy
FIG. 10 (color online). Signal rate for a possible gluon KK resonance as a function of the collider energy employing the cuts described in the text. Branching fractions and efficiencies have been neglected. From top to bottom, the results are shown for gluon KK masses in the range from 3 to 12 TeV in steps of 1 TeV.
Try a completely different line of thinking

with Shadmehr Ban-Shalom [Technion]
+ Jose Wudka [UC, Riverside]

EFT APPROACH TO UNDERSTANDING HIGGS NATURALNESS

126 GeV; warped flavor & 100 TeV

A. Soni HET-BNL
Hierarchy/Naturalness Problem of the SM

\[\delta m_h^2(\text{SM}) = \frac{\Lambda^2}{16\pi^2} \left[24x_i^2 - 6(2x_W^2 + x_Z^2 + x_h^2) \right] \sim 8.2 \frac{\Lambda^2}{16\pi^2}, \quad x_i = \frac{m_i}{v} \quad (v \approx 246\text{GeV}) \]

\[m_h^2(\text{physical mass}) = m_h^2(\text{tree}) + \delta m_h^2(\text{SM}) \approx 126\text{GeV} \]

\[\delta m_h^2(\text{SM}) > m_h^2(\text{tree}) \text{ when } \Lambda \gtrsim 500 \text{ GeV} \]

driving force behind search for NP
Assumptions: weakly coupled, perturbative, renormalizable.

Set up

For subtleties, see, e.g., Jenkins, Manohar & Trott, arXiv:1305.0017; 1308.2627

EFT naturalness: conditions among f_i for theory to be natural at Λ

Heavy physics

$(\text{SM fields and symmetries ...})$

126 GeV; warped flavor & 100 TeV
Sources for corrections

In general, all \((\text{SM} + \text{NP})\) 1-loop corrections to Higgs mass are from:

\[(\text{internal lines are bosons or fermions from either SM or heavy NP})\]:

Within EFT approach: useful to separate the above into 3 categories
\(\delta m_h^2(\text{SM}) \): When all internal lines are the light SM fields.

\(\delta m_h^2(\text{Hvy}) \): When all internal lines are heavy fields of the underlying NP.

\(\Rightarrow \) renorm. of “tree-level” Higgs mass: \(\not\in \text{SM} \)

\(\delta m_h^2(\text{eff}) \): When one line is heavy and the other is light

Generated by L, the ones we are interested in
Expanding the heavy propagators in powers of its large mass, one generates an infinite series of vertices suppressed by inverse powers of this mass (Λ)

$$\delta m_h^2 (\text{eff}) = \sum \frac{1}{\Lambda^{(n-4)}} \sum_i f_i^{(n)} O_i^{(n)}$$

Different types of NP can generate the same operators, but, in general, with different coefficients

$$\delta m_h^2 (\text{SM}) + \delta m_h^2 (\text{eff}) \lesssim m_h^2 \text{ when } \Lambda \gg m_h$$
It ends up that there are only two types of relevant ops.

- Type I: \(\mathcal{O} \) contains 4 scalar fields, any number of derivatives and is not LG.
- Type II: \(\mathcal{O} \) contains 2 fermions and 2 scalar fields, any number of derivatives and is not LG.

FIG. 3: Tree-level graphs that generate the effective operators of type I (diagram a) and II (diagrams b and c), that can produce leading corrections to \(\delta m_h^2 \). \(\phi \) and \(\psi \) denote the SM scalar doublet and fermions, respectively and all vertices are understood to be invariant under SM gauge transformations.
EFT corrections to Higgs mass

\[
\mathcal{O}^{(2k+4)}_S = \frac{1}{2} |\phi|^2 \Box^k |\phi|^2, \quad \mathcal{O}^{(2k+4)}_\chi = \frac{1}{2} (\phi^\dagger \tau_I \phi) D^{2k} (\phi^\dagger \tau_I \phi), \quad \mathcal{O}^{(2k+4)}_{\overline{\chi}} = \frac{1}{4} (\phi^\dagger \tau_I \phi) D^{2k} (\phi^\dagger \tau_I \phi)
\]

\[
\mathcal{O}^{(2k+6)}_v = \frac{1}{2} j^\mu \Box^k j^\mu, \quad \mathcal{O}^{(2k+6)}_\phi = \tilde{j}^\mu \Box^k \tilde{j}^\mu, \quad \mathcal{O}^{(2k+6)}_\Psi = \frac{1}{6} J^\mu D^{2k} J^\mu
\]

\[
j^\mu = i \phi^\dagger D^\mu \phi + \text{H.c.}, \quad \tilde{j}^\mu = i \tilde{\phi}^\dagger D^\mu \tilde{\phi} + \text{H.c.}, \quad J^\mu = i \phi^\dagger \tau^I D^\mu \phi + \text{H.c.}
\]

\[
\mathcal{O}^{(2k+4)}_{\Psi - \Phi} = |\phi|^2 \overline{\psi} (i \not{D})^{2k-1} \psi.
\]
Fine-tuning measure:

\[\Delta_h \equiv \frac{|\delta m_h^2|}{m_h^2} \rightarrow \delta m_h^2 = \delta m_h^2 (SM) + \delta m_h^2 (\text{eff}) \]

\[m_h^2 (\text{tree}) + \delta m_h^2 \]

\[\Delta_h = \frac{\Lambda^2}{16\pi^2 m_h^2} \left| F^{(\text{eff})} - 8.2 \right| \]

\[\left[\frac{m_h^2 (\text{tree})}{\delta m_h^2} + 1 \right] = \frac{1}{\Delta_h} \]

Cancellations must occur to a precision of \(1/\Delta_h\)!

\[\Rightarrow \text{a larger } \Delta_h \text{ corresponds to a less natural theory} \]

Either cancellation among 1-loop contributions \(\Rightarrow m_h (\text{tree}) \sim m_W \) is natural

Or cancellation between \(m_h (\text{tree}) \) and \(\delta m_h \) \(\Rightarrow m_h (\text{tree}) \sim m_W \) requires fine-tuning

A theory [\(F^{(\text{eff})} \)] for which \(\Delta_h \sim 1 \) is natural, while one with \(\Delta_h \sim 10(100) \) suffers from fine-tuning of (no more than) 10% (1%)
Λ~10 TeV:

Natural theories: \[8.17 \lesssim F^{(\text{eff})} \lesssim 8.23 \] ⇒ accidental, symmetry ???

Theories with 10% fine-tuning (at most): \[7.95 \lesssim F^{(\text{eff})} \lesssim 8.45 \]

Theories with 1% fine-tuning (at most): \[5.73 \lesssim F^{(\text{eff})} \lesssim 10.67 \]
Bottom line from EFT considerations

- At the expense of 1% - 0.1% level of tuning, heavy new physics ~5 TeV-10 TeV [in the guise of relatively simple (numerous) constructions] can alleviate SM-Higgs radiative stability issue.

[e.g. a singlet heavy scalar studied extensively ...]

126 GeV; warped flavor & 100 TeV A. Soni HET-BNL
Experimental signals of NP that can potentially cure the fine-tuning problem in the SM-Higgs sector

Bar-Shalom, Wudka+ AS, 1405.2924

\[S \rightarrow hh; \ WV \rightarrow hh; \ \bar{\Upsilon}_N^N \rightarrow hh; \ \bar{\Upsilon}_N \rightarrow h + \ell (\nu); \ \bar{\Upsilon}_N \rightarrow h + q \ \text{etc} \ldots \]
RS OR EFT central message

• There is no strong reason at present for any radical revision of our ideas on naturalness

• [unless one regards ~0.1% tuning to be a serious issue; doubt if this should be the case]
Y BORDERS?
Recall SSC ~ 40 TeV/1990 technologically completely feasible. We should be SERIOUSLY THINKING of GIGANTIC INTERNATIONAL HADRON COLLIDER [GIHC] ~ 100 TeV CM “GEEK”
• After the 126 GeV discovery, key question for our field is the scale of new physics [NP]

• Specifically RS-flavor (which gives a nice geometric understanding of flavor & simultaneously of EW-Plank hierarchy) strongly suggests scale is most likely bigger than ~1 TeV and more likely ~10 TeV.

• Moreover, for RS, our new “Higgs-radion” idea wherein the scalar double doublet simultaneously stabilizes the modulus as well as break EWS, provides an interesting and viable interpretation of the 126 GeV scalar. Most properties very similar to SMH except glue-glue and 2 photon BR. Requires KK-gluon mass of 4.5 to 5.5 TeV....flavor constraints may need mild tuning...

• EFT analysis also suggests heavy NP ~5 – 10 TeV with moderate tuning may well alleviate higgs radiative stability

• Unfortunately scale is out of reach of LHC14
Summary & Outlook (p.2)

• Specifically from the perspective of warped theory the following deserve attention

• Dir CP probes [e.g. nedm, $S[B\rightarrow K \rho\gamma]$; γ; Null Tests,
• t-dm; top FV via e.g. $t\rightarrow c\ Z; t\rightarrow c\ h$; $pp \rightarrow t\ c\ h; e^+ e^- \rightarrow t\ c$
• Expected deviation to higgs couplings $\sim O(0.3\%)$ may be a concern for some experiments

• Precise measurements & precise computations deserve high priority.

• It is essential to have high sensitivity CP-flavor experiments; BUT we should also be seriously thinking of a GIHC (~ 100 TeV) as the next step in our adventure.
FIG. 2: A graphic illustration of the particle/KK spectrum in our setup with (right) and without (left) backreaction.
EWPC

• Unless KK-masses are heavy enough, T-parameter tends to come out large: $\sim 10 \text{ TeV}$ as $\langle \nu \rangle / m_{KK}$ is large.

• Since tuning goes as $\sim [\langle \nu \rangle / m_{KK}]^2$ this tends to make the set up more unnatural compared to $\sim 3 \text{ TeV}$.

• Agashe, Delgado, May & Sundrum, JHEP’03 proposed an interesting way out. Impose "Custodial Symmetry" => extend the gauge group to SU(2) x SU(2) x U(1) which requires introducing additional fermions.

$$Q^3_L = (q^3_L, q'^3_L) = (t_L, \chi_L, b_L, T_L) \rightarrow (2, 2)_{2/3}$$

Thereby EWPC and $Z \rightarrow b\bar{b}$ allow m_{KK} to be $\sim 3 \text{ TeV}$. Tuning is around $\sim 10^{-2}$. However, since kaon mixings etc require around 10 TeV, its not clear if CS is needed any more.
fermion Ψ has left- and right-handed components $\Psi_{L,R}$ which can be expanded in KK modes

$$\Psi_{L,R}(x, \phi) = \sum_{n=0}^{\infty} \psi^{(n)}_{L,R}(x) \frac{e^{2\sigma}}{\sqrt{r_c^e}} f^{(n)}_{L,R}(\phi).$$ \hspace{1cm} (5)

The KK wave functions $f^{(n)}_{L,R}$ are orthonormalized

$$\int d\phi e^{\sigma} f^{(m)}_{L,R} f^{(n)}_{L,R} = \delta_{mn}.$$ \hspace{1cm} (6)

One can then show that the $n \neq 0$ modes are given by $f^{(n)}_{L,R} \propto e^{\sigma/2} Z_{1/2 \pm c}(z_n^{L,R})$ \cite{2}, where $Z_a = J_a + b_n Y_a$ is a linear combination of Bessel functions of order a, $z_n = (m_n/k)e^{\sigma}$ and m_n is the KK mass. The zero-mode wave function is given by

$$f^{(0)}_{L,R} = \frac{e^{\pm c\sigma}}{N_0^{L,R}},$$ \hspace{1cm} (7)

with the normalization

$$N_0^{L,R} = \left[e^{kr_c \pi(1 \mp 2c)} - 1 \right]^{1/2} / kr_c (1/2 \mp c).$$ \hspace{1cm} (8)

In the SM, all $SU(2)$ doublets are left handed, while the singlets are right handed. Hence, one has to impose a Z_2 parity on bulk fermion fields so that only the doublets have KK modes. The scale Λ_4 can be much higher than the scale for light SM fermions.

The above fermion profiles also lead to a natural suppression for SM fermion masses \cite{2,3}. To see this, examine the Yukawa interactions between the Higgs field and the bulk fermions. We will assume that the Higgs field is localized in the IR brane; this is a very good approximation since the Yukawa interaction must be highly IR localized. Then, a typical effective 5D action will take the form

$$S_Y^5 = \int d^4 x d\phi \sqrt{-g} \frac{\lambda_5}{k} H(x) \Psi_L^D \Psi_R^S \delta(\phi)$$

where $\lambda_5 \sim 1$ is a dimensionless 5D Yukawa coupling and Ψ_L^D, Ψ_R^S are doublet left- and singlet right-handed quarks, respectively. After the rescaling $H \rightarrow e^{\sigma} H$ the 4D action resulting from Eq. (12) is

$$S_Y^4 = \int d^4 x \sqrt{-g} \frac{\lambda_4}{k} H(x) \psi_L^{(D,0)} \psi_R^{(S,0)} +$$

with the 4D Yukawa coupling for the corresponding SM fermion is given by \cite{3}

$$\lambda_4 = \frac{\lambda_5}{k r_c} \left(\frac{e^{(1-cp+ c^2)kr_c \pi}}{N_0^{D,L} N_0^{S,R}} \right).$$

with $c^{D,S}$ denoting the 5D mass parameters for quarks and leptons.
The bulk profile of a fermionic zero mode depends strongly on its bulk mass parameter c_Ψ. In case of a left-handed zero mode $\Psi_L^{(0)}$ it is given by [2, 4]

$$f_L^{(0)}(y, c_\Psi) = \sqrt{\frac{(1 - 2c_\Psi)kL}{e^{(1-2c_\Psi)kL} - 1}} e^{-c_\Psi ky}$$

with respect to the warped metric. Therefore, for $c_\Psi > 1/2$ the fermion $\Psi_L^{(0)}$ is localised towards the UV brane and exponentially suppressed on the IR brane, while for $c_\Psi < 1/2$
KK gluon [Agashe et al Snowmass 2013 Benchmarks; arXiV:1309.7847]

Figure 6: 95 % confidence level reach for the Case 2 KK gluon search at \(\sqrt{s} = 14 \) TeV \(L = 300, 3000 \) fb\(^{-1} \). The dashed line represents the upper limit on the cross section whereas solid line is the leading order KK gluon cross section.
Table 3: $pp \rightarrow \ell^{\pm}E_T + 1$ jet cross-section (in fb) for $M_{Z'}=2$ and 3 TeV, and background, with cuts applied successively. The number of events is shown for $L = 100$ fb$^{-1}$ for 2 TeV, and 1000 fb$^{-1}$ for 3 TeV.

<table>
<thead>
<tr>
<th>$M_{Z'} = 2$ TeV</th>
<th>p_T</th>
<th>$\eta_{t,j}$</th>
<th>M_{eff}</th>
<th>M_{WW}</th>
<th>M_{jet}</th>
<th># Evts</th>
<th>S/B</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>4.5</td>
<td>2.40</td>
<td>2.37</td>
<td>1.6</td>
<td>1.25</td>
<td>125</td>
<td>0.39</td>
<td>6.9</td>
</tr>
<tr>
<td>$W+1j$</td>
<td>1.5×10^5</td>
<td>3.1×10^4</td>
<td>223.6</td>
<td>10.5</td>
<td>3.15</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>1.2×10^3</td>
<td>226</td>
<td>2.9</td>
<td>0.13</td>
<td>0.1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M_{Z'} = 3$ TeV</th>
<th>p_T</th>
<th>$\eta_{t,j}$</th>
<th>M_{eff}</th>
<th>M_{WW}</th>
<th>M_{jet}</th>
<th># Evts</th>
<th>S/B</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>0.37</td>
<td>0.24</td>
<td>0.24</td>
<td>0.12</td>
<td>-</td>
<td>120</td>
<td>0.17</td>
<td>4.6</td>
</tr>
<tr>
<td>$W+1j$</td>
<td>1.5×10^5</td>
<td>3.1×10^4</td>
<td>88.5</td>
<td>0.68</td>
<td>-</td>
<td>680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>1.2×10^3</td>
<td>226</td>
<td>1.3</td>
<td>0.01</td>
<td>-</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shrihari Gopalakrishina et al; arXiv:0709.0007
Singlet widely studied

TABLE I. A summary of the most notable differences between our setup and the GW mechanism.

<table>
<thead>
<tr>
<th>Stabilizing field</th>
<th>GW mechanism</th>
<th>Our setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>The bulk mass parameter $[V(\Phi) = m^2 \Phi^2]$</td>
<td>Scalar singlet</td>
<td>SU(2) scalar doublet</td>
</tr>
<tr>
<td>VEV profile, $\phi_0(y)$</td>
<td>$m^2 \ll 1$</td>
<td>$m^2 \rightarrow -4k^2$</td>
</tr>
<tr>
<td>TeV brane VEV, $\phi_{\text{TeV}} \equiv \phi_0(y = y_{\text{c}})$</td>
<td>Nearly flat</td>
<td>Steep, peaked on the TeV brane</td>
</tr>
<tr>
<td>Planck brane VEV, $\phi_{\text{Pl}} \equiv \phi_0(y = 0)$</td>
<td>$\phi_{\text{TeV}} \sim \mathcal{O}(M_{\text{Pl}})$</td>
<td>$\phi_{\text{TeV}} \sim \mathcal{O}(M_{\text{Pl}})$</td>
</tr>
<tr>
<td>Lowest scalar excitation</td>
<td>$\phi_{\text{Pl}} \sim \mathcal{O}(M_{\text{Pl}})$</td>
<td>$\phi_{\text{Pl}} \sim M_{\text{Pl}} e^{-2ky} \ll \mathcal{O} (\text{eV})$</td>
</tr>
<tr>
<td>(Higgs-)radion couplings</td>
<td>Radion</td>
<td>Higgs radion</td>
</tr>
<tr>
<td></td>
<td>Purely metric couplings</td>
<td>Both metric couplings and Yukawa/gauge couplings of the doublet</td>
</tr>
</tbody>
</table>

Tree level couplings to $gg \rightarrow WW$!