

## Motivation



Most SUSY searches have focused on strong production, which has the largest

cross section



- Limits on these models probe masses of strongly-interacting particles up to ~1 TeV
  - Similar cross-sections to EWK gaugino's of 300-400 GeV
- Interesting when squarks and gluino's are heavy, but EWKinos are light
- Very clean multi-lepton signatures with little hadronic activity

## Chargino-neutralino production



chargino-neutralino production: light sleptons and sneutrinos



- Model naturally gives 3ℓ (off-Z) signatures, but can give 2ℓ or 3ℓ (on-Z) signatures, depending on mass spectrum
  - consider options where taus are preferred
    - final states with hadronic taus are considered
  - Dedicated analyses:
    - 3-lepton search
    - same-sign di-lepton analysis (Veto third lepton, fully exclusive)

# Chargino-neutralino production



chargino-neutralino production: direct decays to bosons (heavy sleptons)





- Model naturally gives 3e and 3l (on-Z) and 2l (on-Z) + jets signatures
- Model naturally gives a variety of signatures following the Higgs decay modes

-Extra handle: Higgs mass

- Dedicated analyses:
  - 3-lepton + M(II) + MT
  - 2-lepton + di-jet + MET

- Dedicated analyses:
  - 1 lepton +b's
  - SS dileptons
  - trileptons

# Other models for direct EWK SUSY production







**GMSB Higgsino production** 

• Models naturally give 20 (off-Z) signatures

Chargino pair production  $\nu$ 

- Dedicated analysis:
  - opposite -sign di-lepton analysis

- Dedicated analysis for HH decay mode:
  - 4b analysis (SUS-13-022)
- Dedicated analysis for ZZ decay mode:
  - four leptons analysis
  - Z + dijet analysis

# Three lepton analysis





#### • Selection:

- Exactly 3 leptons, at most 1  $\tau_{had}$
- B-veto to reduce ttbar
- MET>50 GeV cut to reduce Z+jets
- MET, m<sub>⊤</sub> and dilepton mass binning
  - dilepton mass bins to reduce Z backgrounds
  - mT bins to reduce W backgrounds

### Backgrounds:

- Data-driven background prediction for non-prompt and misidentified leptons
- WZ: MC with data-driven corrections to MET



# Three lepton analysis



### arXiv:hep-ex/1405.7570

### **Multiple final states:**

- 3 e/μ, OSSF pair
- 3 e/ $\mu$ , no OSSF
- SS e/ $\mu$  +  $\tau_{had}$
- OS  $e\mu + \tau_{had}$

#### **Results:**

For au-enriched

models

Data consistent with prediction in the full region of phase space



# Same-Sign dilepton analysis



- Small mass splittings can lead to soft leptons and missing one of the leptons
- Tighter cuts needed because of larger backgrounds

#### Selection:

- Exactly 2 high  $p_T$  electrons or muons
- Z veto
- Cut on small hadronic activity or large MET:
  - SR1: MET>200 GeV
  - SR2: jet-veto, 120 GeV<MET<200 GeV</li>

### Backgrounds:

 Data-driven background prediction for nonprompt and misidentified leptons

#### Results:

Good agreement between data and prediction



# Chargino-neutralino production





### arXiv:hep-ex/1405.7570



$$m_{\text{slep}} = x \cdot m_{\chi^+} + (1-x) \cdot m_{\text{LSP}}$$



## Z+dijet analysis





- **Selection:** 
  - Z -> ee or μμ candidate
  - Third lepton veto
  - B veto to suppress ttbar
  - Dijet mass compatible with W boson
  - Use MET bins

### **Backgrounds:**

- Z+jets MET modeled with  $\gamma$ +jets templates
- Flavor symmetric backgrounds from eµ

#### **Results:**

Data well described over several orders of magnitude

#### arXiv:hep-ex/1405.7570



# Chargino-neutralino production to WZ



#### arXiv:hep-ex/1405.7570



- 3l without Z candidate

- Z+dijet analysis
- 3 with Z candidate



## WH cross-section and final states



Н

- Different Higgs decays according to SM branching fractions
  - Lead to different final state signatures



# WH single-lepton





#### Selection:

- 1 high  $p_T e/\mu$
- Use kinematic variables to exploit extra MET in event:
  - Cuts on m<sub>T</sub>, m<sub>T2</sub><sup>bl</sup>
  - Different MET bins
- exactly 2 jets, both b-tagged
- Look for resonance in M(bb)

### Backgrounds:

- Mostly ttbar and W+jets
- MC with data-driven corrections

#### Results:

No peak visible in mass spectrum





## WH SS dilepton



arXiv:hep-ex/1405.7570



- Selection:
  - Exactly 2 same-sign e/μ
  - B-veto to suppress ttbar
  - 2 or 3 jets
  - Extra cuts on MET and different m<sub>T2</sub>
     variables to reduce SM backgrounds
  - Try to reconstruct visible Higgs mass

### Backgrounds:

- Data-driven estimates for non-prompt and misidentified leptons
- Prompt SS 2I from MC

#### Results:

No excess found in M<sub>III</sub> mass spectrum



## WH multi-lepton



### Re-interpretation of inclusive multilepton analysis: hep-ex/1404.5801

### Selection:

- 3 or 4p<sub>T</sub> leptons; max. 1  $\tau_{had}$
- Detailed binning:
  - Number of leptons
  - # b-jets
  - MET
  - H<sub>⊤</sub>

### Backgrounds:

- MC with data-driven corrections for ttbar, VV
- Data-driven for Z+jets and Zγ\*

### Results:

- Focus on regions with low H<sub>T</sub> and b-veto
- No excess visible





## Chargino-neutralino production to WH



- Sensitivity up to 200 GeV
- 1 most powerful
  - SS 2I and ≥3I contribute at low mass



arXiv:hep-ex/1405.7570



## Conclusions



Wide variety of searches for EWK SUSY

arXiv:hep-ex/1405.7570

- No SUSY found
- Stringent constraints on masses of gauginos
- Probing chargino-neutralino masses up to 200-720 GeV, depending on decay mode



# Back-up

# Four lepton analysis



### Selection:

- $4 e/\mu \text{ or } 3e/\mu + \tau$
- Bin in number of oppositesign same-flavor pairs, dilepton mass and MET
- b-jet veto to suppress ttbar

### Backgrounds:

- ZZ: MC with data-driven
   MET corrections
- Data-driven method for non-prompt and misidentified leptons

### Results:

 No significant excess seen in data vs. prediction



# Chargino-neutralino production to SM bosons



### arXiv:hep-ex/1405.7570





- Neutralino pair production in gauge-mediated symmetry breaking (GMSB) higgsino model
  - Exclusion in terms of parameter (μ) that controls the masses for Chargino and LSP

$$m_{\widetilde{\chi}_1^{\pm} \approx} m_{\widetilde{\chi}_1^0} \approx \mu$$

**Interesting region for naturelness** 

# GSMB model (ZZ)

- Cross section of  $\chi^0 \chi^0$  is suppressed w.r.t.  $\chi^{\pm} \chi^0 \rightarrow$  no sensitivity to models with only  $\chi^0 \chi^0$  production
- Interpret results using GMSB model with large BF to ZZ+MET



• 3 diagrams enhance  $\sigma \times BF$  to ZZ+MET final state

#### neutralino-neutralino



### chargino-neutralino



#### chargino-chargino



# OS dilepton analysis



### Selection:

- 2 OS dileptons
  - Separately eµ and ee/µµ
- B-veto to suppress ttbar
- MET>60 to suppress Z+jets
- Fit MC<sub>T,Perp</sub>-spectrum
  - Kinematic endpoint for WW, ttbar,...

### Backgrounds:

 Fit templates from MC and data-driven control regions

### Results:

Observed MC<sub>T,Perp</sub> agrees with prediction



# Chargino and slepton pair production









# M<sub>CT,Perp</sub>



$$\begin{split} M_{\text{CT}}^2 &= m^2(\mathbf{v}_a) + m^2(\mathbf{v}_b) \\ &+ 2 \left[ E_{\text{T}}(\mathbf{v}_a) E_{\text{T}}(\mathbf{v}_b) + \mathbf{p}_{\text{T}}(\mathbf{v}_a) \cdot \mathbf{p}_{\text{T}}(\mathbf{v}_b) \right] \\ M_{\text{CT}}^{\text{max}} &= \frac{m^2(P) - m^2(C)}{m(P)} \end{split}$$





- Endpoint only holds if PP are back-to-back (no ISR)
- Project visible momentum in direction perpendicular to ISR or other visible upstream objects

• Implemented as 
$$\vec{p}_{\mathrm{Up}} = -(\vec{p}_{\mathrm{T,miss}} - \vec{p}_{\mathrm{T1}} - \vec{p}_{\mathrm{T2}})$$

$$M_{\mathrm{CT\perp}}^2 = m^2(\mathrm{v}_a) + m^2(\mathrm{v}_b) + 2\left[E_{\mathrm{T\perp}}(\mathrm{v}_a)E_{\mathrm{T\perp}}(\mathrm{v}_b) + \mathbf{p}_{\mathrm{T\perp}}(\mathrm{v}_a) \cdot \mathbf{p}_{\mathrm{T\perp}}(\mathrm{v}_b)\right]$$

arXiv:0910.1584

where

$$E_{\mathrm{T}\perp}(v) = \sqrt{m^2(v) + \mathbf{p}_{\mathrm{T}\perp}^2(v)}$$

if m(v) = 0,

$$M_{\text{CT}\perp}^2 = 2p_{\text{T}}(v_1)p_{\text{T}}(v_2) (|\sin \phi_1||\sin \phi_2| + \sin \phi_1 \sin \phi_2)$$

 $\phi_i$  is the angle between  $\mathbf{p}_{\mathrm{T}\perp}(v_i)$  and  $\mathbf{p}_{\mathrm{Up}}$ 

## 4b + MET search



#### Selection:

- 4-5 jets, of which 3 or more are b-tagged
- Pair jets into Higgs candidates
  - Minimize difference in invariant masses
- Cut on MET significance and topological cuts (Δφ)
- Look at average M<sub>ii</sub>

### Backgrounds:

 Estimate from sidebands in mass window and # b-tags

#### Results:

- No significant excess seen (max.  $\sim$ 1.5  $\sigma$ )



Pieter Everaerts EWK SUSY June 5, 2014 25

## 4b + MET search



• Results:

**CMS-PAS-SUS-13-022** 

- Slight  $\sim$ 1.5  $\sigma$  excess in 4b region

### Interpretation:

 Small region expected to be excluded close Higgsino mass of 300 GeV, not excluded because of small excess



