Precision studies of collective dynamics in lead-lead and proton-lead collisions with the ATLAS detector

Soumya Mohapatra
Columbia University

LHCP 2014
2-7 June 2014
- Initial spatial fluctuations of nucleons lead to higher moments of deformations in the fireball, each with its own orientation.
- The spatial anisotropy is transferred to momentum space by collective flow.

\[\varepsilon_n = \sqrt{\frac{\langle r^n \cos(n\phi) \rangle + \langle r^n \sin(n\phi) \rangle}{r^n}} \]

\[\tan(n\Phi_n) = \frac{\langle r^n \sin(n\phi) \rangle}{\langle r^n \cos(n\phi) \rangle} \]

- The harmonics \(v_n \) carry information about the medium: initial geometry, \(\eta/s \).
- Measuring harmonics = Understanding initial geometry & medium properties
Centrality, p_T & η dependence of $\langle v_n \rangle$

- **Features of Fourier coefficients**
 - v_n coefficients rise and fall with centrality.
 - v_n coefficients rise and fall with p_T.
 - v_n coefficients are \simboost invariant.

$$\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos n(\phi - \Phi_n)$$

ATLAS Unique measurements

- Event-by-Event v_n measurements
- $v_n - v_m$ correlations
- $\Phi_n - \Phi_m$ correlations
The large acceptance of the ATLAS detector and large multiplicity at LHC makes EbE v_n measurements possible for the first time.
\(v_3 \) distributions are consistent with pure Gaussian fluctuations

\[
p(v_n) \propto v_n \exp\left(-\frac{v_n^2}{2\delta_n^2}\right)
\]

deviations in the tail (increases central->midcentral)

For \(v_2 \) pure Gaussian fits only work for most central (2%) events.
Measuring the hydrodynamic response: v_2

$\nu_n \propto \epsilon_n = \frac{\sqrt{\langle r^n \cos n\phi \rangle^2 + \langle r^n \sin n\phi \rangle^2}}{\langle r^n \rangle}$

For Glauber and CGC mckln

Both models fail describing $p(v_2)$ across the full centrality range
Unfolding in different p_T ranges: 20-25%

Distributions for higher p_T bin is broader, but they all have ~same reduced shape. Hydrodynamic response factorizes into a p_T dependent and geometry dependent part.
Mean and sigma of v_n distributions

for gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Mean and sigma of v_n distributions

for gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Different methods give different results as each is affected differently by fluctuations

Can directly calculate cumulants from EbyE v_n measurements and compare
Much more variation in v_2 within one centrality than variation of mean v_2 across all centralities

Should also study the variation of v_n at fixed centrality but varying event-geometry: “event-shape-selected v_n measurements” (arXiv 1208.4563 Schukraft et al.)
\[v_2 e^{i2\Phi_2} \propto \varepsilon_2 e^{i2\Phi_2^*}, \quad v_3 e^{i3\Phi_3} \propto \varepsilon_3 e^{i3\Phi_3^*} \]

- Correlations can arise from initial geometry effects.
- Glauber calculations show anti-correlations between \(\varepsilon_2 \) and \(\varepsilon_3 \) that can lead to anti-correlations between \(v_2 \) and \(v_3 \).

Measure correlations = Understand geometry of initial state

- Correlations can arise from non-linear response to \(\varepsilon_n \).

\[v_4 e^{i4\Phi_4} = a_0 \varepsilon_4 e^{i4\Phi_4^*} + a_1 \left(\varepsilon_2 e^{i2\Phi_2^*} \right)^2 + \ldots \]

Collective response to eccentricities

\[= c_0 \varepsilon_4 e^{i4\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2} \right)^2 + \ldots , \]

- Measure correlations = Understand hydro response

Pb+Pb, \(b_{\text{imp}} = 10 \text{ fm} \)

arXiv 1311.7091
v_n-v_2 correlations: centrality dependence

- First correlation without event v_2-selection, 5% steps

v_2 (higher p_T)

- ATLAS Preliminary
- √S_{NN}=2.76 TeV
- |Δη|>2, Pb+Pb
- L_{int} = 7 μb\(^{-1}\)
- Central (0-5%)
- Peripheral (65-70%)

“Boomerang” reflects stronger viscous damping at higher p_T and peripheral

V_3

- ATLAS Preliminary
- √S_{NN}=2.76 TeV
- 0.5 < p_T < 2 GeV
- |Δη|>2, Pb+Pb
- Central
- Peripheral

V_4

- ATLAS Preliminary
- √S_{NN}=2.76 TeV
- 0.5 < p_T < 2 GeV
- |Δη|>2, Pb+Pb
- Central
- Peripheral
Fix system size and vary the ellipticity!

- **Linear correlation within a given centrality** → viscous damping controlled by system size, not shape

\(v_n - v_2 \) correlations: within fixed centrality

Probe \(p(v_n, v_2) \)
\(v_n - v_2 \) correlations: within fixed centrality

- Fix system size and vary the ellipticity!
- Overlay \(\varepsilon_3 - \varepsilon_2 \) and \(\varepsilon_4 - \varepsilon_2 \) correlations, rescaled

\(v_2 \) (higher \(p_T \))

Linear correlation within a given centrality \(\rightarrow \) viscous damping controlled by system size, not shape

\(V_3 \)

Clear anti-correlation,

\(V_4 \)

quadratic rise from non-linear coupling to \(v_2^2 \)

Probe \(p(v_n, v_2) \)
v_n-v_2 correlations: within fixed centrality

- Fix system size and vary the ellipticity!
- Overlay $\varepsilon_3-\varepsilon_2$ and $\varepsilon_4-\varepsilon_2$ correlations, rescaled

v_2 (higher p_T)

Linear correlation within a given centrality \rightarrow viscous damping controlled by system size, not shape

V3

Clear anti-correlation, mostly initial geometry effect!!

V4

quadratic rise from non-linear coupling to v_2^2 initial geometry does not work!!

Initial geometry describe v_3-v_2 but fails v_4-v_2 correlation
linear (ε_4) and non-linear (v_2^2) component of v_4^{17}

- v_4-v_2 correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4} + c_1 \left(v_2 e^{i2\Phi_2} \right)^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

- Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component
- v_4-v_2 correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 (v_2 e^{i2\Phi_2})^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

- Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component

- Extracted linear and non-linear component as a function of centrality
Two-particle correlations show long range correlation structure along $\Delta \eta$ at $\Delta \phi = 0$.

Is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?

- Final state effect may not imply hydro

Is there an away-side ridge in pp and pPb?

What is its detailed p_T, η, and centrality dependence?
Peripheral subtraction

- Estimate contribution of jet & recoil correlations using low multiplicity events
- Subtract from correlations in high-multiplicity events to obtain “true” long-range correlations

Central - Peripheral=True correlation
$p + Pb$ v_n

$ATLAS$ Preliminary

$\sqrt{s_{NN}} = 5.02$ TeV

$L_{int} = 28$ nb$^{-1}$

$p + Pb$

$220 \leq N^{rec}_{ch} < 260$

$1 < p_T^{n} < 3$ GeV, $|\eta| > 2$

- $n=2$
- $n=3$
- $n=4$
- $n=5$

CMS, $220 \leq N^{off}_{trk} < 260$

V_2, $N^{off}_{trk} < 20$ sub.

V_3, $N^{off}_{trk} < 20$ sub.
$p+Pb \, v_n$

$ATLAS$ Preliminary

$220 \leq N^{\text{rec}}_\text{ch} < 260$

$1 < p_T^{b} < 3 \text{ GeV}, |\Delta\eta| > 2$

$p+Pb$

$C_{\text{NN}}=5.02 \text{ TeV}$

$L_{\text{int}} \approx 28 \text{ nb}^{-1}$

CMS, $220 \leq N^{\text{off}}_\text{trk} < 260$

V_2, $N^{\text{off}}_\text{trk} < 20$ sub.

V_3, $N^{\text{off}}_\text{trk} < 20$ sub.

V_2

$0.4 < p_T^{a,b} < 3 \text{ GeV}$

$2 < |\Delta\eta| < 5$

$ATLAS$ Preliminary

$L_{\text{int}} \approx 28 \text{ nb}^{-1}$

$p+Pb$

V_3

V_4
Compare p+Pb with Pb+Pb v_n

Right panels adjust p+Pb p_T scale by 4/5 to account for difference in $<p_T>$ (Teany et al arXiv:1312.6770)

Pb+Pb v_2 and v_4 multiplied by 0.66 to match p+Pb

Good agreement between p+Pb and Pb+Pb when including p_T and v_2, v_4 rescaling
ATLAS has measured collective phenomena in Pb+Pb collisions
 - Two-particle correlations, Event-plane & Cumulants

Unique ATLAS measurements
 - Event-by-Event probability distribution of v_2-v_4
 - v_m-v_2 correlations
 - Event-Plane correlations

Direct understanding of fluctuations in initial geometry & nature of hydrodynamic response to the fluctuations

Measured long-range correlations in p+Pb events
 - Estimated and removed jet and recoil contributions using peripheral events
 - Extracted v_1-v_5 using two-particle correlations
 - Harmonics qualitatively similar to those in Pb+Pb correlations
Cumulant measurements

Measured v_2 using 2, 4, 6 & 8-particle cumulants

Measured v_3, v_4 using 2 & 4-particle cumulants
Correlation between Φ_2 and Φ_4

- Results expressed as function of N_{part}.
- Very different from correlations in initial state (Glauber).
- What happens if we include final-state-interactions?
Correlation between Φ_2 and Φ_4

- Results expressed as function of N_{part}.
- Very different from correlations in initial state (Glauber)
- What happens if we include final-state-interactions?
- Correlations well reproduced in AMPT model
 - AMPT results from arXiv:1307.0980 (Bhalerao et. al.)
- Conclusion: large fraction of v_4 originates from ε_2 during hydrodynamic expansion !!!
Correlation of Φ_2 or Φ_3 with Φ_6

- Φ_2 and Φ_3 both strongly correlated with Φ_6
- They show opposite centrality dependence though:
 - Φ_2-Φ_6 correlation may due to average geometry..
 - But Φ_3-Φ_6 correlation?
 - v_6 dominated by non-linear contribution: v_2^3, v_3^2?
Correlation of Φ_2 or Φ_3 with Φ_6

- Final state interactions reproduce the correlations

- Conclusion: large contribution to v_6 from $(\epsilon_2)^3$ & $(\epsilon_3)^2$ during hydrodynamic expansion !!!
\(p+Pb \) vs. \(v_n \)

ATLAS Preliminary

- \(s_{NN} = 5.02 \text{ TeV} \)
- \(L_{\text{int}} \approx 28 \text{ nb}^{-1} \)

Conditions:
- \(220 \leq N_{\text{ch}}^{\text{rec}} < 260 \)
- \(1 < p_T^b < 3 \text{ GeV}, |\Delta \eta| > 2 \)
- \(V_2, N_{\text{off}}^{\text{sub}} < 20 \)
- \(V_3, N_{\text{off}}^{\text{sub}} < 20 \)

CMS, \(220 \leq N_{\text{off}}^{\text{trk}} < 260 \)

Graphs:
- **Fig. 1:**
 - \(V_2 \)
 - \(V_3 \)
 - \(V_4 \)

Equations:
- \(0.4 < p_T^{a,b} < 3 \text{ GeV} \)
- \(2 < |\Delta \eta| < 5 \)

ATLAS Preliminary

- \(s_{NN} = 5.02 \text{ TeV} \)
- \(L_{\text{int}} \approx 28 \text{ nb}^{-1} \)

Figures:
- **Fig. 2:** \(0.5 < p_T^b < 1 \text{ GeV} \)
- **Fig. 3:** \(2 < |\Delta \eta| < 5 \)

Legend:
- \(\bullet \) \(N_{\text{ch}}^{\text{rec}} \geq 260 \)
- \(\circ \) \(220 \leq N_{\text{ch}}^{\text{rec}} < 260 \)
- \(\triangle \) \(180 \leq N_{\text{ch}}^{\text{rec}} < 220 \)
- \(\square \) \(140 \leq N_{\text{ch}}^{\text{rec}} < 180 \)
- Tracking coverage: $|\eta|<2.5$
- FCal coverage: $3.2<|\eta|<4.9$ (used to determine Event Planes)
- For event-plane correlations use entire EM calorimeters ($-4.9<\eta<4.9$)