Version 10 0- p01

Multithreading

in Geant4 version 10
and its integration to
experiments’ simulation ;

frameworks /

Makoto Asai (SLAC)
° On behalf of the Geant4 Collaboration
LPCC detector simulation workshop

March 19, 2014

b l ‘ h NAT I O N A L h 5;‘*‘?""‘% U.S. DEPARTMENT OF
Y/ ENERGY

—— @ ACCELERATOR

qhﬂ‘ LABORATORY Office of Science

e ¢@ENBG £E Fermilab

1 A F~ NATONAL
CE/RW SLAS i @TRIUMF
\

Contents

General introduction and highlights of
multithreading functionalities in Geant4
version 10.0

Status of LHC experiments on shifting
to multithreading

Prospective

Note: For all other new or improved
features in Geant4 version 10 except
multithreading, please refer to the
presentations at the previous
Geant4 Technical Forum.

Multithreading in Geant4 \

simulation

AQUITAINE

lapp.

£cOLe|
POLYTECHNIQUE
Toch

Introduction
Geant4 is being used in many different fields where simulation of
radiation passing through and interacting with matter is critical.
User domains include: high energy and nuclear physics, medical
physics and space engineering, shielding protection and more.
Its abstract layers based on robust OO design enables flexibility
and extendibility of the code, and its open-source code and open
collaboration have allowed substantial extensions of the code.
New features are constantly added to the code, while increasing
attention is paid to improving software performance and
robustness by employing cutting-edge software engineering
technologies.

New physics
The flexibility and extendibility of
Geant4 design allows it to be applied
to new physics domains.These include” 7%
the physics of condensed matter
(pf.wnon transportation in c.rysca\s, SuperCDMS Cryogenic Dark Matter
drift of electrons and holes in Search seeks to directly detect dark
semiconductors) and processes for ~ matter. Geant4 models the caustic

N . | (left
bio-chemical substances and DNA, ~ Paern ina Ge crysal (eft) by
tracking individual phonons (right)

Recion Rcion i (10° M)

S Geant4 performs

mission critical studies

of radiation and

charging effects on

spacecraft electronics. Impact of Neon
ion on MOS FET.

Reactions of radicals available in Geant4

o Simulacgd single
event upset (SEU

E
H

Energy depositions in DNA structure. M
Time (Saconds)

Geometry

The flexibility and extendibility of Geant4
design also enables handling rich
collection of shapes including CSG
(Constructed Solid Geometry), BREP
(Boundary REPresented), Boolean
operation, Tessellated solid, etc.and the
user can easily add new shapes. Geant4
geometry navigation can deal with setups|
up to billions of volumes with automatic
optimization. In addition, geometry
models can be ‘dynamic’, i.e. changing the
setup at run-time, e.g."“moving objects”.

Software quality assurance

Geant4 uses modern tools to manage the code and improve code
quality: from handling issues with JIRA to continuous testing
integration with CTest/CDash, profiler based optimizations,
Quality/Assurance (Coverity,Valgrind, etc.), and IDE integration

(Xcode, Eclipse, VisualStudio). oy

/™ Lawrence Livermore

- oCpe
National Laboratory T - LKIST giﬁﬂ%ﬁ%ﬁ%

New era - Geant4 version 10 series
The next release of Geant4 —Version 10.0 (December 2013) will
include event-level parallelism via multi-threading. To efficiently use
new computing architectures the workload of a single job will be
sub-divided to many worker threads each responsible for the
simulation of one or more events. Current beta release has already
shown good scalability on a number of different architectures: Intel
Xeon servers, Intel Xeon Phi co-processors and low-power ARM
processors

+ Proof of principle + APl re-design

+ Identify objects to « Bxample migration
be shared + Further testing

+ First testing + First optimizations

« MT code integrated « Production ready
into G4 « Public release

* Further
refinements

Intel Xeon L5520 @ 2.27GHz

Intel Xeon Phi 7120P @ 1.238GHz

© 8 0 12 14 16
N Threads

Exynos 4412 Quad-Core @ 1.7 GHz

56 700

00 150
N Threads

Total memory consumption of Intel
Xeon Phi 7120P @ 1.238GHz

o= 38012003456
b 31v4s:
Cizindot = 17.5(1697/97)

z 5
N Threads

W w0
Number of threads

Investments for the future
Geant4 collaboration members are participating in various
explorations of emerging technologies. These technologies include
GPU/CUDA, OpenCL, OpenACC, vectorization, DSL, etc.

Office of Science

\

BORDEAUX 1

RITSUKEIKAN

N @ENERGY Ceantdess.
Facilities Council

Version 10 0-p01

General introduction
and highlights of multithreading
in Geant4 version 10

‘ ~ h NAT I O N A L U.S. DEPARTMENT OF
1 A ENERGY

ACCELERATOR

QHHV LABORATORY Office of Science

Geant4 version 10 series

n

 Therelease in 2013 was a major release.

— Geant4 version 10.0 — release date : Dec. 6, 2013
* The highlight is its multi-threading capability.

— A few interfaces need to be changed due to multi-threading
* |t offers two build options.

— Multi-threaded mode (including single thread)

— Sequential mode

* In case a user depends on thread-unsafe external libraries, (s)he may install
Geant4 in sequential mode.

rototype-9.4 rotatype.0.s) G410.0beta G4 10.0 G4 10 series
(2011) (2012) (June 2013) (Dec. 2013) (2014~)

* Proof of * MT code * APlre-design ¢ AP * Further
principle integrated * Example refinements refinements

* |dentify into G4 migration * Production and
objects to * Further testing ready optimizations
be shared * First e Public

* First testing optimizations release -dbacks \

fe
Multithreading in Geant4 version 10 aggis eciate Youf‘
simulation frameworks e

Geant4 multi-threading : event-level parallelism

n

e This choice minimizes the changes in user-code
* Maintain API changes at minimum
e All Geant4 code has been made thread-safe.
— Thread-safety implemented via Thread Local Storage

* Most memory-consuming parts of the code (geometry, physics tables) are shared
over threads.

— “Split-class” mechanism: reduce memory consumption
* Read-only part of most memory consuming classes are shared
* Enabling threads to write to thread-local part

e Particular attention to create “lock-free” code: linearity (w.r.t. #threads) is the
metrics we concentrated on for the v10.0 release.

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Split class — case of particle definition

* |In Geant4, each particle type has its own dedicated object ot
G4ParticleDefinition class.

— Static quantities : mass, charge, life time, decay channels, etc.,
* To be shared by all threads.

— Dedicated object of G4ProcessManager : list of physics processes this
particular kind of particle undertakes.

* Physics process object must be thread-local.

<shared> <static singleton> <thread local>
G4ParticleDefinition G4PartDefSplitter TLS pointer
- G4double mass - Array of TLS - Proc man*
- G4double charge pointers of N
e o - Proc man
- G4double lifetime G4ProcessManager
_ *
-Decay table - TLS pointer Proc man
-G4int - TLS pointer -*
: , - Proc man
particlelndex - TLS pointer
>TLS pointer
- TLS pointer
- TLS pointer

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Geant4 multi-threading : event-level parallelism

n

* This choice minimizes the changes in user-code
* Maintain API changes at minimum
e All Geant4 code has been made thread-safe.
— Thread-safety implemented via Thread Local Storage

* Most memory-consuming parts of the code (geometry, physics tables) are shared
over threads.

— “Split-class” mechanism: reduce memory consumption
* Read-only part of most memory consuming classes are shared
* Enabling threads to write to thread-local part

e Particular attention to create “lock-free” code: linearity (w.r.t. #threads) is the
metrics we concentrated on for the v10.0 release.

* Initial performance penalties observed in early prototypes have already been
addressed.

 Testing on both x86_64 and MIC architectures
e Use of POSIX standards

— Allowing for integration with user-preferred parallelization frameworks (e.g.
MPI, TBB, etc.)

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Multi-threaded mode

main() Master thread

///-\\\
G4WorkerRunManager - hager - ser —-
G4EventManager —- ger —- r —-
G4TrackingManager —- nager —- ger —-
G4SteppingManager —- nager - er —-

Worker thread #0 Worker thread #1 Worker thread #2

? Multithreading In Geant4 version 1U and ItS Integraton to experiments’
simulation frameworks - M. Asai (SLAC)

Shared? Thread-local?

* In the multi-threaded mode, generally saying, data that are stable during the event
loop are shared among threads while data that are transient during the event loop are

thread-local.

* Ingeneral, geometry and physics tables are shared, while event, track, step, trajectory,

hits, etc., as well as several Geant4 manager classes such as EventManager,
TrackingManager, SteppingManager, TransportationManager, FieldManager,
Navigator, SensitiveDetectorManager, etc. are thread-local.

 Among the user classes, user initialization classes (G4VUserDetectorConstruction,

G4VUserPhysicsList and newly introduced G4VUserActionlnitialization) are shared,
while all user action classes and sensitive detector classes are thread-local.

— Itis not straightforward (and thus not recommended) to access from a shared class
object to a thread-local object, e.g. from detector construction to stepping action.

— Please note that thread-local objects are instantiated and initialized at the first
BeamOn.

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Sequential mode

ol An
L= | =7 gu \ 3
main()
G4RunManager UserRunAction
G4EventManager UserPrimaryGeneratorAction
UserEventAction
UserStackingAction
G4TrackingManager UserTrackingAction
G4SteppingManager UserSteppingAction

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Multi-threaded mode

o1 A
L= | =7 gu \ 3
main() Master thread
G4AMTRunManager UserRunAction
£ UserR UserR UserR
serRun serRun serRun
G4WorkerRunManager Action anager Action ger Action

/

UserPrimary
GeneratorAction

GeneratorAction

UserPrimary

UserPrimary
GeneratorAction

G4Event
Manager

UserEventAction

UserEventAction

™~

UserEventAction

\

UserStackingAction

T UserStackingAction

UserStackingAction

G4TrackingManager

UserTrackingA
ction

ager

UserTrackingA

G4SteppingManager

UserStepping
Action

ager

ction

UserTrackingA
ction

UserStepping

Worker thread #0

simulation frameworks - M. Asai (SLAC)

Action

UserStepping
Action

Worker thread #1

Worker thread #2

User classes

» Initialization classes
— Use G4RunManager::SetUserlnitialization() to define.
— Invoked at the initialization
» G4VUserDetectorConstruction
» G4VUserPhysicsList
» G4VUserActionlnitialization m
» Action classes
— Instantiate in G4VUserActionlnitialization.
— Invoked during an event loop
» G4VUserPrimaryGeneratorAction
* G4UserRunAction
» G4UserEventAction
« G4UserStackingAction
» G4UserTrackingAction
« G4UserSteppingAction

Note : classes written in red are
mandatory.

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

Instantiate user action classes

« G4VUserActionlnitialization has two virtual methods.
* Build()
— Invoked at the beginning of each worker thread as well as in sequential

mode
— Use SetUserAction() method to register pointers of all user actions.

— In multithreaded mode, all user action class objects instantiated in this

method are thread-local.
« User run action instantiated in this method is for thread-local run
* BuildForMaster()
— Invoked only at the beginning of the master thread in multithreaded mode

— Use SetUserAction() method to register pointer of user run action for the

global run.

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

G4Allocator

 G4Allocator objects are now thread-local.

* If the user uses G4Allocator for his/her own class, e.g. hit, trajectory or trajectory point,
G4Allocator object must be thread local and thus must be instantiated within the thread.

The object new-ed and allocated by the thread-local G4Allocator must be deleted within the
same thread.

* Thread-local G4Allocator objects are automatically deleted when the worker thread
terminates.

* In MyHit.hh
typedef G4THitsCollection<MyHit> MyHitsCollection;
extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;
inline void™* MyHit::operator new(size_t)
{ if(MyHitAllocator) MyHitAllocator = new G4Allocator<MyHit>;
return (void *) MyHitAllocator->MallocSingle(); }

inline void B2TrackerHit::operator delete(void *hit)
{ MyHitAllocator->FreeSingle((MyHit*) hit); }
* In MyHit.cc
G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator=0;

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Geant4 as a state machine

* Geant4 has six application states.
— GA4State_Prelnit
* Material, Geometry, Particle and/or

Physics Process need to be initialized/
defined

initialize
— GA4State_Idle
* Ready to start a run
— G4State_GeomClosed beamOn

* Geometry is optimized and ready to Y
process an event 8 ,
— GA4State_EventProc ™~ :
* Aneventis processing %’I
— GA4State_Quit g qb) :
X ~-

« (Normal) termination e e e = 2
— GA4State_Abort

» A fatal exception occurred and program is
aborting

| Note: Toggles between GeomClosed and EventProc occur
L for each thread asynchronously in multithreaded mode.

Simplified Master / Worker Model

1 AL
L=) g\ 2

* A G4 (with MT) application can be seen as simple finite state machine

* Threads do not exists before first /run/beamOn

* When master starts the first run spawns threads and distribute work

l [Started] /run/mmallze\(pg:;:,::;d] /run/beamOn M::::“T&::d Completed
’L Initialized J Running - O
Master

start Thread Join

- A , < —

Worker W Thread Event Loop J
Running

Jrun/initialize

Physics and /fun/beamOn
Geometry
Initialized

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Event tasking is not round robin

n

* During the master event loop, an event (or a bunch of events) is tasked to a worker
thread in first-come-first-served basis.

— To minimize the latency at the end of master event loop

— Required toward our next goal of complete decoupling between the master event
loop and worker thread initialization/termination

* Desirable for TBB-based simulation (see later slides)

 Master thread generates Geometry and
Physics
configuration

all the necessary initial
seeds for all events and
dispatch.

— For the sake of full
reproducibility

regardless of number Per-thread

of threads.

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
Event Event Event event to be processes

Loop Loop Loop

End Local End Local End Local
Run Run Run Command line scoring and

%”ﬁ Multith G4tools automatically merge
UITITNIE
Merge in Global Run results from threads

Performance on different architectures

1 AR

n

e VN

» Current release has already shown good scalability on a number of different
architectures: Intel Xeon servers, Intel Xeon Phi co-processors and low-power

ARM processors.

— On Intel architectures, it has shown performance improvements not only up to the
number of physical cores but in hyper-thread mode as well.

Intel Xeon L5520 @ 2.27GHz

(I'nte/)‘
Xeop
ﬂvceggo,_

HyperThreading

o 2 4 6 8 10 12 14 16
N Threads

Intel Xeon Phi 7120P @ 1.238GHz

200 9 A
\
»
150
100/
so | HyperThreading
% 50 100 150 200

N Threads

Exynos 4412 Quad-Core @ 1.7 GHz

g

—

[} 1 2 3 4 5
N Threads

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

Comparison with sequential mode (speed)

Ratio of <CPU Time>/Event/Core

—
—

1.08
1.06
1.04

1.02F

.
0.98 |
0.96 F
0.94F
0.92F

0.9

“CMS-ish” geometry

n

Speedup Efficiency-5 GeV e

__T_fj*_f—l'_T_T—r_T—l—l'—T_T—_
:_I cmsExplcmsExpMT | _:
A
6%
v

Processor: AMD Opteron(tm) Processor 6128 : 32 cores (4 CPU sockets x 8 cores)
CPU: 2000 MHz, Cache: 512 KB, Total Memory: 66007532 kB
OS: Linux kernel 2.6.32-358.11.1.el6.x86_64 GCC 4.4.6 20120305 (Red Hat 4.4.6-4)

Multithreading in Geant4 version 10 and its integration to experiments'

Geantd

simulation frameworks - M. Asai (SLAC)

Memory consumption

« Geant4 compiled for
MIC architecture

* Full CMS detector
without sensitive
detectors, hits or

4500

4000

3500

trajectories =

» No optimization yet = 3000

 ~40MB /thread)

» Works in progress to ®
reduce the memory g‘zsoo
consumption per =
thread. S 2000

* For example
eliminating big 1500
thread-local
arrays in physics 1000
processes

|

|

a 5 38.010.03456 Slope
b=2114F2.013 - Intercept

chiZ/ndo

'

|

17.5(1697/97)

simulation frameworks - M. Asai (SLAC)

Comparison with sequential mode (memory)

Memory Reduction - 50 GeV e

[Mem(MT)/Ncore]/Mem(SEQUENTIAL)

N Cores

w . Ly Processor: AMD Opteron(tm) Processor 6128 : 32 cores (4 CPU sockets x 8 cores)
CMS-ish” geometry CPU: 2000 MHz, Cache: 512 KB, Total Memory: 66007532 kB
OS: Linux kernel 2.6.32-358.11.1.el6.x86_64 GCC 4.4.6 20120305 (Red Hat 4.4.6-4)

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

MPI + multi-threading ~

e Geant4 version 10 works with MPI.
— Many nodes of many cores
Dose Distnbution

Dose Drstribastion

— 10 — 10
e e
g 5

= & = &

& &

&
3 3
]] Ll]] Lisials]]) 1] Ll]] Ll] L 1osss
5 20 s a0 s 40 45 &0 H 10 15 0 S 30 s 40 45 =0
W Z lem)

Dose Drstribastion

Dose Distnibution n\.\w\

Xem)

8

ol Ll b Lo L Laaaa b aaa laaaa o ol Ll b Lo L Laaaa b s baaaa o

0 s 0 15 o0 o 30 35 40 45 0 0 s 0 15 o0 s 30 35 40 45 0
Zlom) Z lem)

v S

« 4 MPI processes with 2 cores each

Each MPI process owns histogram
Threads merge dose calculation in shared histogram

Preliminary studies on TBB

* Intel Threading Building Block is a library for task-based
multi-threading code. Some LHC experiments show their interest

in the use of TBB in their frameworks.

* We have verified that the G4 v10 can be used in a TBB-based application where

TBB-tasks are responsible for simulating events.
— We didn’t need to modify any concrete G4 class/method to adapt to TBB.

* We provide an example in version 10.0 release to demonstrate the way of

integrating Geant4 with TBB.
* We keep investigating where/how to reduce memory use.
We will keep communicating with our users to polish our top-level interfaces.

— Next step includes decoupling of master event loop and worker thread

initialization/termination.

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

Version 10 0-p01

Status of LHC experiments
on shifting to multithreading

b l ‘ h NATIONAL) . DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Office of Science

Status of LHC experiments in shifting to multithreading

n

 We asked LHC experiments about their status and plan of shifting their simulation
code/framework to multithreading. Inquiries are:

— what have been done up to now,
— problems/issues/difficulties identified so far,
— possible solutions to these problems/issues/difficulties,
— plans, including a time-table, toward the production, and
— requests to the Geant4 Collaboration.

* Following slides are their feedbacks.

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

ALICE

N

* what have been done up to now,

— The migration of Geant4 VMC which is the framework used in ALICE simulation is
close to be finished. The beta release is planned for this week. This will allow to
start tests with ALICE geometry, start of migration of the ALICE VMC application

and tests on limited detector setup. We will present more details at the ALICE talk
at the workshop.

» problems/issues/difficulties identified so far,

— Most of problems encountered during the work on Geant4 VMC were already
reported and fixed; the remaining one with optical processes is now added in
bugzilla as #1590. There are a few more minor issues which will be reported in our
talk.

* plans, including a time-table, toward the production, and
— Tests with Geant4 VMC examples run with ALICE geometry (in 1-2 months)

— AliRoot (with a limited detector setup first) migration to MT: this means to adapt
VMC application class for MT and fix thread safety problems in the code which is
used in simulation: AliRoot core classes + detector "steering" classes. (in 1-2 years)

* requests to the Geant4 Collaboration.

— Have a possibility to reduce the output from initialization of physics processes as
this makes the output, especially when run in MT mode, very long.

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

GAMT for ATLAS

G4-MT for ATLAS

e [nitial implementation of Geant4-MT for ATLAS done using G4-MT 9.4.p01 with

some fixes borrowed from 9.5.p01.

e Used semaphore class to keep track of threads and mutexes. (A little awkward,
but ok for initial tests.)

The nutshell ISF vision

DefaultFlavorCalo:
e Geant4 is implemented

inside the Integrated Sim-

W, |
7 ',/ DefaultFlavoriD: ulation Framework (ISF)
#7 ' usefastMC —
Flz:vlrgfgt.erloz - e |ISF allows Geant4 to be
use 1u In cone
; I) .
rourd slactn, 3 5™ FlavorFilter: used simultaneously with
) \ process p . .
Flljas\éoalvlt:::: with full MC various types of fast sim-
| . -

jet containing b-

- ulation within individual
hadron

events.

I me= R. Harrington === 1 === 2nd LPCC Detector Simulation Workshop, CERN, 18-19 March 2014 s I

GAMT for ATLAS

Lessons learned with G4-MT for ATLAS .

e ATLAS simulation is implemented inside Athena framework, and has a small

dependence on some of the framework services (such as messaging) which are

not thread-safe.

— We need to limit the use of these services, and protect where necessary (if
possible)

— This highlights the need to move toward a thread-safe version of Athena (with
simulation as an ideal test candidate)
e To use Geant4 simultaneously with fast simulation, control of final hit collections
has to be maintained outside of Geant4.
— Changes in release 10 of Geant4 make this easier — not expected to be a

problem now.

e The ATLAS simulation framework creates all stepping and other types of actions
as singletons, and modifying the framework to allow multiple instances of these

actions would have required an extensive redevelopment of the framework

— Initial studies will be done with a reduced set of stepping actions (i.e., no

truth storing) to simplify testing (expected to be easier in rel. 10)

. Harrington === 2 === 2nd LPCC Detector Simulation Workshop, CERN, 18-19 March 2014 s I

GAMT for ATLAS

Parallelisation studies

e Parallelisation of tracks:
— Perhaps the easiest to implement (at least in standard G4-MT).

— Not clear whether this gives any improvement over event-level parallelisation.

e Sub-detectors:
— Limits number of threads/processes writing to the same truth/hit collections.

— Would allow separate lookup tables for B-field and less memory per thread for

geometries.

— Cache optimisation

e Particle type: Cache optimisation has been studied in the past, will perhaps look

again with Geant4 release 10.
e Separate threads for various simulation flavours (full and fast) in ISF.

e Best solution: probably a combination of all of the above. Studies needed to

determine which to choose.

. Harrington === 3 === 2nd LPCC Detector Simulation Workshop, CERN, 18-19 March 2014 s

CMS

Compact Muon Solenoid

Geant4 10.0 in CMSSW (1/2)

e CMS started to test Geant4 10.0 from the beginning of November
— All compilation problems were resolved
— Development build is multi-threaded used in sequential mode
 Multithread Geant4 build problems for CMSSW were resolved

— It was realized that because of CMSSW plugin system the compilation
option ‘-ftls-model=global-dynamic’ is mandatory

* Geant4 is using ‘-ftls-model=initial-exec’
— The problem was in large TLS memory allocated for Geant4 objects
* First estimate of CPU performance — similar to Geant4 9.6p02

— CPU profiling shows:
* Mathematical functions, EM and hadronic physics take less time than that of 9.6p02
* Leading CPU usage (~30%) for transportation in CMS geometry and magnetic field

 Currently Geant4 10.0p01 has been integrated into CMSSW
— Sequential build is planned to be used for start of production for 2015 run
— Physics checks have been already started

CMS

Compact Muon Solenoid

Geant4 10.0 in CMSSW (2/2)

 Multi-threaded build of Geant4 is available in the dedicated
branch where CMS MT simulation is under development
— It is planned to have a production-ready version for Q3 of 2014
— The goal is to have both sequential and MT working within the
same production version of CMSSW
e CMSSW is using CLHEP which should be thread safe

— CLHEP is used not only by Geant4 but also by other CMSSW
packages

 Main request to Geant4 team: develop extended TBB example
within Geant4
— Demonstrate how Geant4 MT may be used efficiently within TBB
— How manage memory allocated for Geant4 task if number of
streams for SIM is dynamic?
* A stream may perform different tasks

* How to avoid re-initialisation of Geant4 when a stream switched from
other task to Geant4 simulation?

Gauss

Gauss operates in two phases - generation and simulation.

JobOpts Initialize | | JobOpts 4
4
S, s
S,
Interface fr;%;;gs
MCParticle

Initialize Pythia HepMC MCVertex

EvtGen ‘ MCHits

Geometry
-——/——
. > O - 4
e il i o
Event Generation Detector Simulation
rimary event generator geometry of the detector (LHCb -> Geant4)
specigl);zed degay package tracking through materials (Geant4)
hit creation and MC truth information (Geant4 - LHCb)

pile-up generation

@ GEANT4 “events” scheduled by Gaudi.
@ Detector geometry converted during initial event.
@ Out of time pileup handled in same Gauss job, requiring only one

instantiation of Generator, EVTGEN and GEANTA4.
March 14, 2014 5/8

Paul Szczypka (CERN/EPFL) LHCb Simulation and GEANT4 10 MT

Out of Time Pileup in Gauss (Spillover)

Random number reset

Pile-up number determination Pile-up number determination
P (allowing empty events) _— T~ veto empty events
o ——— &
© - . . o
@ Minimum Bias Generation in “ ~ e s'gt;‘ca;' G:'ner:‘tlgg in t=0
8 /EvenUPrev/GenIHepMCEvents - : — (EVON 9"(‘ S vents
Vertex Smeanng Vertex Smearing
Rﬁndom number reset Q
~ Generation -> G4 anary Vix Generation -> G4 Primary Vix
3
<§ Slmulatlon in detector I .‘
E Fill MCParticle/MCVertex/MCHit
w Fill MCPartchelMCVertex/MCHlt in /Event/MC/Particles. ..
in /Event/Prev/MC/Particles...

mm Digitization

@ Multiple generation and simulation sequences are defined in one
Gauss job
@ Specific seeds assigned for each step of the sequence.

@ Data written to different paths corresponding to the various
sequences.

Paul Szczypka (CERN/EPFL) LHCb Simulation and GEANT4 10 MT

March 14, 2014

Gen Seq #1

Sim Seq #1

Difficulties integrating GEANT4 M'T

Major changes to Gauss would be required to incorporate GEANT4 MT"

@ Events scheduled by Gaudi rather than GEANTA4.

o Whole event loop (seeding, execution, data writing) would need to be
re-written.

e Unclear how to process OoT pile up events and signal separately with
GEANT4 M'T manager.

@ Geometries in Gauss are converted into GEANT4 format during
initialisation of first event.

e Requires re-ordering of GEANT4 geometry initialisation.

Current activities therefore focus on GaudiHive for multi-threading.

LHCb Simulation and GEANT4 10 MT

March 14, 2014

GaudiHive

@ GaudiHive is an implementation of the Gaudi framework which
supports concurrency.

@ Tests with “MiniBrunel” promising.

somsosogornmsan ool Oiovs ~- e
the events & Prefiminary: 2 sockets * 6 cores * 2 HT, ?LC‘.MMum. 1 sochet only
812~
e ——— EventLoopM 9 |Simul Evis
P R MO ~ TP § r 3 (cloning)
. RN " | (cloning)
. TBB Runtime {\i“lg 10 10 (cloning) = P
\ i | 4 20 (cloning) RIS
AlgScheduler ™ AlgorithmPool g—|®3 33
. 5 X3
[410 5k
g
p— e} A Give away/ 6 LY & ‘
| ‘ Algorithm g@i Algorithm get baCK , i O
' Whiteboard (T E&\'Z’}‘} q (idle) algorithms | & f [[
7[7 \ instances 4 : <
h“_'f':"‘" V e—— Event Slots ; L &
\ \ | b 1 8 ¢ 0 + + *
) 2- L i {
“group” of events - o
treated concurrentlv PP PP . | P - [
0 2 4 6 8 10 12

Using Gauss with GaudiHive is in the exploratory stages, but the
ThreadSafe tools provided by GEANT4 M'T are most welcome.

Paul Szczypka (CERN/EPFL LHCb Simulation and GEANT4 10 MT March 14, 2014 8/8

Version 10 0- p01

Prospective

b l ‘ h NATI O NAL \ U.S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY = Office of Science

Beyond Geant4 version 10.0

« Geant4 version 10 series will be evolving.

e APl re-design

* Example migration
* Further testing

* First optimizations

n

* Proof of principle
» |dentify objects to be shared
* First testing

e Further refinements and
optimizations

rotf)?M-el;e 4 rot?)fclMle 5 G4 10.0.beta G4 10.0 G4 10 series
AR S (June 2013) (Dec. 2013) (2014~)
* MT code integrated * APlrefinements
into G4 * Production ready

. * Public release
* Performance improvements

— Algorithm optimization / local vectorization
» without losing code readability / maintainability / flexibility
— Optimization of file access
 Memory space reduction in particular for per-thread memory
— Sharing more physics vectors and other objects among threads
* Multithreading leftover
— Some visualization, neutron_hp, general particle source, Geant4e, etc.

« Completion of decoupling between master event loop and worker thread initialization /
termination

— See later slide

Multithreading in Geant4 version 10 and its integration to experiments' simulation

frameworks - M. Asai (SLAC)

Software quality improvements (h’ctp://code.google.com/p/goodg{)“~

Pl AN
 We are working with Google on performance measurements of Geant4-based
application using Gooda tool, a PMU-based event data analysis package.
= <’ Cycles Samples | <7 Cycles Samples
1S Mal res Ld,;\es < ced
a0dres® pr“‘"w disﬁssembw m\ha“ed'wrezCyc uovs‘rmre : (i:\st"“&::;:f:mrw ’ Y\oaﬂ—‘aﬂ“d wst”’dw‘}d‘rV pand® | yine ! Sourc® unhﬂ“ed'cn(bdc uovs—"ewe : :::t"“&::;—e"(;:«red:a:iaﬂ—‘aﬁnd i.\st""‘ta
P i 9801 (1009) 183440 (73%) 81361 96333 55/57004 (62%) ‘;‘3/02099 (40%) .‘3”478 ax /249801 (100%) 183440 (73%) 81361 96333 ‘.‘3/57004 (62%) L&/ozogg (40%)
0x30ce8 521 [Basic Block 26 <0x30b2b> 268 (0%) 146 (54%) 95 105 20 (7% 513 Gddouble y;
0x30ce8 521 Jea 0x0(,%rax,8),%r8 139 (0%) 102 (73%) 32 38 20 (14%) 514 if(theEnergy <= edgeMin) { 43596 (17%) 35500 (81%) 5730 7862 24814 (56%) 19478 (44%)
0x30cef 521 null 515 lastrdx = 0; 636 (0%) 519 (81%) 63 120 308 (48%) 318 (50%]
0x30cf0 521 Tea Ox8(,%rax,8),%r9 80 (0%) 37 (46%) 48 60 516 y = datavector([0]; 1202 (0%) 1082 (90%) 11 158 4035 (335%) 924 (76%]
0x30cf7 521 null 517 } else if(theEnergy >= edgeMax) { 3170 (1%) 2353 (74%) 651 738 1113 (35%) 1520 (47%]
0x30cf8 521 jmpg 30b2b 50 (0%) 7 (%) 16 8 518 lastIdx = numberOfNodes-1;
0x30cfd 521 [Basic Block 27 <0x30d00> 519 y = datavector[lastIdx];
0x30cfd 521 nopl (%rax) 520 } else {
0x30d00 521 E Basic Block 28 <0x30ed9.. 7463 (2%) 5649 (75%) 3111 3133 3478 (46%) 4929 (66%) 129 (| 521 lastIdx = FindBin(theEnergy, lastIdx); 109860 (43%) 76853 (69%) 45196 54010 65906 (59%) 41559 (37%
0x30d00 521 movg %xmm0,-0x8(%rsp) 805 (0%) 548 (68%) 317 286 99 12%) 378 (46%) 20 (| 522 y = Interpolation(lastIdx, theEnergy); 84798 (33%) 61193 (72%) 29102 32887 59616 (70%) 35646 (42%]
0x30d06 521 mov -Ox8(%rsp),%rax 805 (0%) 716 (88%) 206 264 10 %) 566 (70%) 20 (| 523 }
0x30d0b 521 mov %rax,%rcx 566 (0%) 438 (77%) 190 173 70 (12%) 298 (52%) 524 returny;
0x30d0e 521 shr $0x34,%rcx 517 (0%) 373 (72%) 22 a1 30 (5%) 149 (28%) 525 } 6539 (2%) 5941 (90%) 508 557 1034 (15%) 2554 (39%]
0x30d12 521 sub SOx3ff,%ecx 119 (0%) 88 (73%) 32 60 526
0x30d18 521 cvtsi2sd %ecx,%xmmd 199 (0%) 95 (47%) 40 60 20 (10%) A N
0x30dlc 521 mov SOXBOOFFFFFFFFFFF.. 1232 (0%) 957 (77%) 484 505 60 (4%) 765 (62%) 30 (| 528
0x30d23 521 null 529 G4double G4Physicsvector::FindLinearEnerg..
0x30d26 521 and %rex, %rax 10 (0%) 8 530 {
0x30d29 521 mov $0x3fe00000000000.. 531 if(1 >= numberofNodes) { return 0.0; }
0x30d30 521 null 532 size_t nl = 0;
0x30d33 521 or %rex,%rax 533 size_t n2 = numberOfNodes/2;
ST LY €21 mase Vmnse ALANIG ana (L] roon acn rocon LY LEE) an rrn n40 racon 534 ciza + n2 = numharnfNndec - 1-
2R

Basic Block 4 |

_l' Basic Block 13 }ﬁ
iasic Block 17 H Basic Block 18 H Basic Block 19 ’r-/

» Basic Block 20 Basic Block 21 H Basic Block 22 H Basic Block 23 M Basic Block 24 m Basic Block 25
‘ Basic Block 27 H Basic Block 28 H Basic Block 29 ‘ *D{ Basic Block 35 H Basic Block 40 ‘
’ Basic Block 39 H Basic Block 30 H Basic Block 38 | ’ Basic Block 36 H Basic Block 34 ‘

Basic Block 5 m
Basic Block 14 H Basic Block 15 H Addr 4 ‘

Code optimization for both CPU and coprocessor

LN

Performance Expectations: “Two Birds with One Stone”

e Performance will be HEATCODE Benchmarks

same C++ code

=
o
[N

disappointing if code is not
optimized for multi-core
CPUs

e Optimized code runs better
on the MIC platform and on
the multi-core CPU

Performance, voxels/second

e Single code for two UNOPTIMIZED OPTIMIZED
platforms + Ease of porting =

C e . More information in case study on
Incremental optimization

research.colfaxinternational.com

Compututing with Xeon Phi Optimization for Intel Xeon Family Products © Colfax International, 2014

Dr. Andrey Vladimirov (Colfax International) — seminar at Stanford U.

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Decoupling of master event loop and worker thread initialization/termination

n

* Ensuring a worker thread to join at

any time during the event loop of the Geometry and

Physics
master configuration
— After the master thread finishes

initialization for geometry and

cross-section tables to be shared

* Ensuring a worker thread to leave at

any time during the event loop of the Per-thread Per-thread Per-thread

— After finishing assigned task (an
event or a bunch of events)

Event Event
* We plan to complete this decoupling Loop Loop Loop

with some additional APIs

— Flrst set of new APIS will come End'Local End Local
with v10.1-beta in June. Run Run

— Your feedbacks are essential.
Merge in Global Run

Multithreading in Geant4 version 10 and its integration to experiments'
simulation frameworks - M. Asai (SLAC)

Tosum up

el A

L] 7 ga \ * 4

* Feedbacks are appreciated. Without users’ feedbacks to Geant4-MT prototypes, we
couldn’t make Geant4 version 10.0.

* Version 10.0 was a big milestone for us as it was the first production version of Geant4
in multithreading mode. But it is not our ultimate goal in terms of making Geant4
multithreaded.

— Our next goal includes complete decoupling of master event loop and worker
initialization/termination so that each worker thread may join/leave at any time
during the event loop with minimal initialization/termination overhead. We plan to
deliver first additional APIs at 10.1-beta.

— Your further feedbacks on version 10.0 are most valuable.

 We admit our user’s guide is not perfect, in particular for advanced users who need to
extend/alternate kernel functionalities to control worker thread.

— We will improve our document.

— Also, denser communication between experiments and Geant4 developers is
mandatory.

* Proposing a mini-workshop on May 12-13
* Next Geant4 Technical Forum is tomorrow at 16:00 CET.

Multithreading in Geant4 version 10 and its integration to experiments'

simulation frameworks - M. Asai (SLAC)

