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Introduction

* In addition to hard interaction:
- Pileup from other collisions in current and surrounding bunch crossings

- Cosmics, Beam-gas, Beam-halo, Cavern background, Detector noise, ...

Option 1: Option 2:
“Pileup MC” (current default) “Overlay”
Simulate all processes in MC* Simulate only hard interaction
and mix together in proper in MC and overlay a “random” data
ratios with realistic timing event to include all backgrounds**

e Overlay method used by BaBar, DO, ...
e Pileup MC method mostly used so far at ATLAS

- Overlay being used for some studies, specialized analyses, and Heavy-lon
*Cosmics, beam-gas, beam-halo are small — not currently included in pileup MC

**Statistics of rare background events such as beam-halo will be very poor.
Must trigger on a signature of the signal MC event to accurately model background rates.
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Option 1: Simulating Pileup

(1) Run the event generation for “minbias” for single pp interactions
— Pythia8, A2 tune, MSTW2008LO PDFs
— Inelastic (non-diffractive) and single/double diffractive

(2) Run GEANT4 on each minbias event to simulate detector
energy/time "HITS"

(3) Combine multiple (thousands!) of HITS events during digitization
— Use representative #interactions per bunch crossing, shifted in
time, to reproduce in-time and out-of-time pileup
— Sample bunch spacing/pattern within the sensitive time window

of ATLAS detectors [-800,800] ns
(4) Add model of detector noise separately
(5) Add cavern background separately (see talk by Jochen Meyer)

-100 ns -50 ns 0 ns : In-time +50 ns
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ATLAS Sensitive Time Window

Bunch Crossing -32
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Simulating Pileup: Bunch Structure

Example of a pile-up model with fixed 50ns spacing between colliding BCIDs:
25n5 tick ('bunch’)

Signal
Minbias
Cavern

= Colliding BCID

In reality the structure of colliding and non-colliding BCIDs can be more complicated.

Filed BCs [ NEEEN NENNN

The pile-up/detector response is affected by the position of the triggering BCID in
the bunch train (see later).

Bunch structure modelling is included in the pile-up simulation.

« Patterns can be up to 3564 elements in length and wrap-around if required.

» Each triggering BCID is picked from the colliding BCIDs in the pattern, with a
probability proportional to the relative luminosities of each bunch crossing.
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Simulating Pileup: Variable (Bunch) Luminosity

 Well known that <u> varies over time.
|  Run 180164 (April 2011): Run 190300 (October 2011):
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* u can also vary greatly from BCID to BCID in data, as the
plots above show.

« Both in-time and out-of-time pile-up effects are important.

e Problem:

* Simulating samples at a fixed <u> value makes it difficult to
re-weight MC to data...
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Impacts of Pileup
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e Correction was applied for all 2012 data and MC...
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Impacts of Pileup

* Energy in calorimeter in cone around electrons — higher at start of
bunch train, before negative tails from out-of-time pileup contribute

 Modeled well by simulation, but also explicitly corrected for at the
cell level during reconstruction for 2012 data and MC
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Simulating Pileup: Digitization

For each MC job, create a cache of minbias events in memory

- Only read in chache the parts of each event that are needed
(e.g. discard HITS in silicon strips outside [-50,50] ns)

Generating huge samples of minbias background is expensive!
- 20M minbias events simulated for 2012 (10M “low-pt”, 10M “high-pt")
e “low-pt”: no AntiKt6Truth jets with pT>35 GeV
- 77 TB storage at each MC production site

Reuse simulated minbias events across various MC samples
e Also reuse “low-pt’ out-of-time minbias events within a MC sample
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Simulating High Luminosity Pileup

« For High luminosities previous pile-up approach has
ISsues...

« Consider a typical upgrade scenario:

« 200 pp-collisions per colliding BCID
« fixed 50ns spacing between colliding BCIDs
> ATLAS would be sensitive to 33 colliding BCIDs

> 33 x~200 x 2 =0(13200) background events (minimum
blas+cavern) required per single signal eventl

« Having this many simulated events in memory at once
Is not feasible, so an alternative must be found...
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Simulating High Luminosity Pileup

» The previous pile-up approach (AKA the “Algorithm” approach) :

digitizes the information from all required bunch crossings for a given sub-
detector before moving on to the next sub-detector.

« Background event info cached to allow re-use.

+ The “PileUpTools” approach:

provides one filled bunch crossing at a time to all sensitive sub-detectors.

Background events are read as required and discarded from memory after
each filled bunch crossing is processed.

— Sacrifice caching of background to save memory.
- Resulting increase in I/O Time means an increased wall-clock time.

« Asingle pile-up Athena Algorithm calls an Athena AlgTool for each sub-

detector. The AlgTools know the time window for which they are sensitive to
bunch crossings.

Digits/RDOs are produced from intermediate information cached locally by the
sub-detector tools, after all filled bunch-crossings have been processed.
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PileUpTools Memory Savings (32-bit)

i686-slc5-gecc4 3-opt

32 bit Algorithms (MCI1 | Code using MC10 inputs) =
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Option 1.5: Simulation Using Embedding

* For specialized studies, such as Z—tt simulation, also perform
embedding at reconstruction (not digitization) level

® remove muon tracks and simulated calorimeter energy from data

Constrain systematics
on tau-ID and Z—z
kinematics / mass ...

® replace by full-sim Z—TT decays, generated with Tauola
® re-run full event reconstruction: pile-up, jets and Er™= from data

® normalization from MC prediction (trigger effect not simulated)
Underlying event and

® validation with p—p embedding (data to data) and Alpgen MC Z pT distribution from data
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Option 2: Overlay pileup (and noise) from data

1. Define data period to simulate and select “random™ (RAW) zerobias

data events, proportional to luminosity (details later...)
2. Simulate hard-scatter events (GEANT4) with conditions matching

each selected data event (beamspot, alignments, dead modules, etc.)

— Note: running GEANT4 on geometry with data alignments

3. Overlay each zerobias data event with matching GEANT4 event at

the detector channel level, then digitize combined signals
4. Reconstruct the combined event as data

2) zerobias data

Run/ event (RAW)

LBN/
Time 3) Overlay

4) “Data”

RDO :
reconstruction

ESDs
AODs
etc...

code for
digitization
EVGEN HITS

Conditions database
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/erobias datasets

o Trigger L1 ZB fires 1 turn after EM14 — proportional to bunch lumi
- Prescaled to keep "1 Hz in 2011, 710 Hz in 2012 — 765 M events

- No zero-suppression: about 3MB /event

e Sample zerobias events from lumiblocks in the desired time-period to
reproduce the instantaneous luminosity profile of L1 EM30
(account for changing prescales, etc.)

Zerobias RAW filelist “map” file Output file (100 events)
datal2 8TeV...lbn00345.0001...RAW 6 wanted
datal2 8TeV...Ibn00345.0002...RAW 4 wanted
datal?2 8TeV...Ibn00346.0001...RAW 1 wanted — Zerobias 001.RAW
datal2 8TeV...Ibn00347.0001...RAW 3 wanted

about 760 files This is just 1 job for 100 events.

500 jobs needed for a 50k dataset.
1000 50k datasets for 50M events.

Now works in MC production system!
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Pileup Simulation vs. Data Overlay

e Drawbacks compared to pileup simulation:

Less accurate when combining overlapping background and signal on the
same channel for some subdetectors Fe.g. S|I|con%

» Zerobias data is readout zero-suppressed for some detectors (e.g. pixels)

Background reconstructed with MC R-T relations (TRT, MDT), so
slight resolution degradation for background tracks and muons

Potential GEANT4 geometry overlaps when using data alignments
Limited (but large) statistics of background data

Can't simulate future detector geometries (for some upgrade studies)
Don't have the background truth information — it's datal

e Overlay advantages:

Real pileup data events — no generator tuning

#vertices and inst. luminosity match data — no event weighting

Real mix of BCID variation, in-time/out-of-time pileup, satellite bunches
Real detector noise, occupancy — including cavern background

Real detector conditions (beamspot, dead channels, etc.)

Less CPU and memory need at high luminosity...
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Pileup Simulation vs. Data Overlay

“linearly with the number of pileup interactions

Digitization of “thousands of added simulated HITS events grows

Overlay only has to add one data event, independent of luminosity!
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Overlay MC for pp Physics

* One example: “Search for Higgs decay to long-lived particles”
- Reconstruct displaced vertex in muon system

- Background from punch-through jets and cavern background hits
- Must model cavern background accurately! i &
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ATLAS Upgrade Studies Using Overlay

e (Cavern background is nicely modeled in overlay
* Overlay multiple zerobias data events to simulate higher luminosity!

- Noise is double-counted, but negligible in the muon system

- Validated using 3 low-luminosity events compared to 3x luminosity data

e Saturation of MDT End-cap Inner tubes confirmed
- Helped to motivate New Small Wheel Upgrade
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Heavy lon Simulation Using Overlay

e Almost no pileup in heavy-ion collisions, but..
- Underlying event is huge, difficult and costly to simulate!
« Use (minbias) HI data, overlay hard parton interaction simulated at
the same event vertex position
- 720M HI overlay MC events produced

- Used for many HI results successfully ...

Measurement of the correlation of jets with high pT isolated
prompt photons in lead-lead collisions at sqrt(s)=2.76 TeV

Overlay MC
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Conclusions

o ATLAS uses several methods for modeling pileup and other detector
backgrounds in our simulation

- Simulated Pythia8 minbias is currently used for most simulations
- Embedding is used for specialized studies, e.g. for Z—tt

- Overlay is an alternate method, currently used for some performance
studies, pp and HI physics analyses, and detector upgrade studies

 Working to improve accuracy and speed of all these methods
e Pileup will become increasingly important with larger inst. luminosity
 We must model pileup efficiently to simulate larger datasets

H— ZZ — 4 @ 2.6e33 H— ZZ — 4u @ 2.6e34
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Backup
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Pile-up Digitization: vmem breakdown

Contribution to vmem [total 1980.8MB]

Detector Common 25.0MMB
Pixel (exclusive) G0.0MB

SCT (exclugive) 48.6MB

Core 537.8MEB

X86_64-slch-gcc4 3-opt
<u>=8.0, Fixed 25ns
bunch-spacing.

TRT {exchsive) 191.3ME

———— [nner Detector Other 26.3MB
Calorimeter Shared 7.7MB

Writa Output 159.4MEBE

~— LAr Calorimeter (exclusive) 318.6MB
LVL1 Emulation 54.60ME
This contribution

increases fastest
with luminosity.

Tile Calorimater EE:MN} 42 /MB

'|| W‘ﬁllﬁ: W M

AP (Bxc ﬁa}'ﬁ&ﬁﬁﬁj : Muon Spectrometer Shared 43.0MB

Truth 284.2MB ——

One approach to save memory under validation is to filter truth info in the background HITS files.
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Algorithm and PileUpTools Approaches to Pile-up Digitization

Suh detectors |ntermediate info stored

F’rocess one sub-detector

},f sub detector code at a time.
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Simulating Pileup: Pythia8+GEANT4

High pT Generate Inclusive ND+SD+DD Cavern
Minimum Bias Minimum Bias (Pythia8 tune 4c¢) Background
HITS Dataset Track Record

Dataset

Create Truth-jets

Neutron with
E< 5 MeV or which
has been travelling
For 150 ns?

Simulate sample

(GEANT4
+ QGSP_BERT)

Simulate sample
(GEANT4
+ QGSP_BERT_HP)

YES _~Any Truth-jets with

pT > 35 GeV/?

High pT
Minimum Bias
HepMC Dataset

Wrap SimHit times
modulo mean

Low pT Simulate sample bunch spacing
Minimum Bias (GEANT4
HepMC Datase + QGSP_BERT HP
Low pT Cavern
Minimum Bias . Background
HITS Dataset Simulate sample HITS Dataset
(GEANT4

+ QGSP_BERT

INSIDE ATHENA 77\
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Impacts of Pileup

« Jet offsets from pile-up are modelled to <50%
« Remaining differences from BCID-to-BCID beam current variation were not

modelled in 2011 MC
Monte Carlo
. I |
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