ATLAS Pileup and Overlay Simulation

Andy Haas (NYU) on behalf of the ATLAS Collaboration

LHC Detector Simulations, CERN March 18-19, 2014

Introduction

- In addition to hard interaction:
 - Pileup from other collisions in current and surrounding bunch crossings
 - Cosmics, Beam-gas, Beam-halo, Cavern background, Detector noise, ...

Option 1: "Pileup MC" (current default)

Simulate all processes in MC* and mix together in proper ratios with realistic timing

Option 2: "Overlay"

Simulate only hard interaction in MC and overlay a "random" data event to include all backgrounds**

- Overlay method used by BaBar, D0, ...
- Pileup MC method mostly used so far at ATLAS
 - Overlay being used for some studies, specialized analyses, and Heavy-Ion

^{*}Cosmics, beam-gas, beam-halo are small \rightarrow not currently included in pileup MC

^{**}Statistics of rare background events such as beam-halo will be very poor.

Must trigger on a signature of the *signal* MC event to accurately model background rates.

Option 1: Simulating Pileup

- (1) Run the event generation for "minbias" for single pp interactions
 - → Pythia8, A2 tune, MSTW2008LO PDFs
 - → Inelastic (non-diffractive) and single/double diffractive
- (2) Run GEANT4 on each minbias event to simulate detector energy/time "HITS"
- (3) Combine multiple (thousands!) of HITS events during digitization \rightarrow Use representative #interactions per bunch crossing, shifted in
 - time, to reproduce in-time and out-of-time pileup
 - \rightarrow Sample bunch spacing/pattern within the sensitive time window of ATLAS detectors [-800,800] ns
- (4) Add model of detector noise separately
- (5) Add cavern background separately (see talk by Jochen Meyer)

 $-100 \, \text{ns}$

-50 ns

0 ns : In-time

 $\pm 50 \text{ ns}$

3

ATLAS Sensitive Time Window

Simulating Pileup: Bunch Structure

Example of a pile-up model with fixed 50ns spacing between colliding BCIDs:

- The pile-up/detector response is affected by the position of the triggering BCID in the bunch train (see later).
- Bunch structure modelling is included in the pile-up simulation.
 - Patterns can be up to 3564 elements in length and wrap-around if required.
 - Each triggering BCID is picked from the colliding BCIDs in the pattern, with a probability proportional to the relative luminosities of each bunch crossing.

Simulating Pileup: Variable (Bunch) Luminosity

Well known that <μ> varies over time.

- μ can also vary greatly from BCID to BCID in data, as the plots above show.
- Both in-time and out-of-time pile-up effects are important.
- Problem:
- Simulating samples at a fixed <μ> value makes it difficult to re-weight MC to data...

Impacts of Pileup

- But sizeable impact on jets (+ETmiss) and τ .
- LAr drift-time is ~ 500 ns and out-of-time bunches have impact on measurement.
- Bipolar pulse shaping designed so that <ET> ~ 0 for 25 ns bunch-spacing and uniform intensity per BX.
- Optimal performance will require correction per cell type in η -bins and as a function of luminosity to set average measured ET to \sim 0.
- Correction was applied for all 2012 data and MC...

Impacts of Pileup

- Energy in calorimeter in cone around electrons \rightarrow higher at start of bunch train, before negative tails from out-of-time pileup contribute
- Modeled well by simulation, but also explicitly corrected for at the cell level during reconstruction for 2012 data and MC

Simulating Pileup: Digitization

- For each MC job, create a cache of minbias events in memory
 - Only read in / cache the parts of each event that are needed (e.g. discard HITS in silicon strips outside [-50,50] ns)
- Generating huge samples of minbias background is expensive!
 - 20M minbias events simulated for 2012 (10M "low-pt", 10M "high-pt")
 - "low-pt": no AntiKt6Truth jets with pT>35 GeV
 - ~7 TB storage at each MC production site
- Reuse simulated minbias events across various MC samples
- Also reuse "low-pt" out-of-time minbias events within a MC sample

Simulating High Luminosity Pileup

- For High luminosities previous pile-up approach has issues...
- Consider a typical upgrade scenario:
 - 200 pp-collisions per colliding BCID
 - fixed 50ns spacing between colliding BCIDs
 - → ATLAS would be sensitive to 33 colliding BCIDs
 - → 33 x ~200 x 2 = O(13200) background events (minimum bias+cavern) required per single signal event!
- Having this many simulated events in memory at once is not feasible, so an alternative must be found...

Simulating High Luminosity Pileup

- The previous pile-up approach (AKA the "Algorithm" approach):
 - digitizes the information from all required bunch crossings for a given subdetector before moving on to the next sub-detector.
 - Background event info cached to allow re-use.
- The "PileUpTools" approach:
 - provides one filled bunch crossing at a time to all sensitive sub-detectors.
 - Background events are read as required and discarded from memory after each filled bunch crossing is processed.
 - Sacrifice caching of background to save memory.
 - Resulting increase in I/O Time means an increased wall-clock time.
 - A single pile-up Athena Algorithm calls an Athena AlgTool for each subdetector. The AlgTools know the time window for which they are sensitive to bunch crossings.
 - Digits/RDOs are produced from intermediate information cached locally by the sub-detector tools, after all filled bunch-crossings have been processed.

PileUpTools Memory Savings (32-bit)

Option 1.5: Simulation Using Embedding

- For specialized studies, such as Z→ττ simulation, also perform embedding at reconstruction (not digitization) level
- remove muon tracks and simulated calorimeter energy from data
- replace by full-sim Z→TT decays, generated with Tauola
- re-run full event reconstruction: pile-up, jets and E_Tmiss from data
- normalization from MC prediction (trigger effect not simulated)
- validation with µ→µ embedding (data to data) and Alpgen MC

 $Z{
ightarrow}\mu$ data $Z{
ightarrow}\tau\tau$ GEANT4 $Embedded~Z{
ightarrow}\tau\tau$ MC in data event

Constrain systematics on tau-ID and Z→ττ kinematics / mass ...

Underlying event and Z pT distribution from data

Option 2: Overlay pileup (and noise) from data

- 1. Define data period to simulate and select "random" (RAW) zerobias data events, proportional to luminosity (details later...)
- 2. Simulate hard-scatter events (GEANT4) with conditions matching each selected data event (beamspot, alignments, dead modules, etc.) \rightarrow Note: running GEANT4 on geometry with *data alignments*
- 3. Overlay each zerobias data event with matching GEANT4 event at the detector channel level, then digitize combined signals
- 4. Reconstruct the combined event as data

Zerobias datasets

- Trigger L1_ZB fires 1 turn after EM14 ightarrow proportional to bunch lumi
 - Prescaled to keep ~1 Hz in 2011, ~10 Hz in 2012 ightarrow ~65 M events
 - No zero-suppression: about 3MB/event
- Sample zerobias events from lumiblocks in the desired time-period to reproduce the instantaneous luminosity profile of L1_EM30 (account for changing prescales, etc.)

<u>Zerobias RAW filelist</u>	<u>"map" file</u>	<u>Output file (100 events)</u>
data12 8TeVlbn00345.0001RAW data12 8TeVlbn00345.0002RAW	6 wanted 4 wanted	
data12 8TeVlbn00346.0001RAW data12 8TeVlbn00347.0001RAW	1 wanted 3 wanted	→ Zerobias 001.RAW
· .		
about ~60 files	(500	his is just 1 job for 100 events. 1 jobs needed for a 50k dataset. 10 50k datasets for 50M events.

Now works in MC production system!

Pileup Simulation vs. Data Overlay

- Drawbacks compared to pileup simulation:
 - Less accurate when combining overlapping background and signal on the same channel for some subdetectors (e.g. silicon)
 - Zerobias data is readout zero-suppressed for some detectors (e.g. pixels)
 - Background reconstructed with MC R-T relations (TRT, MDT), so slight resolution degradation for background tracks and muons
 - Potential GEANT4 geometry overlaps when using data alignments
 - Limited (but large) statistics of background data
 - Can't simulate future detector geometries (for some upgrade studies)
 - Don't have the background truth information it's data!
- Overlay advantages:
 - Real pileup data events no generator tuning
 - #vertices and inst. luminosity match data no event weighting
 - Real mix of BCID variation, in-time/out-of-time pileup, satellite bunches
 - Real detector noise, occupancy including cavern background
 - Real detector conditions (beamspot, dead channels, etc.)
 - Less CPU and memory need at high luminosity...

Pileup Simulation vs. Data Overlay

- Digitization of ~thousands of added simulated HITS events grows ~linearly with the number of pileup interactions
- Overlay only has to add one data event, independent of luminosity!

- More critical later, especially for fast simulation methods
- Other methods
 (fast digi) also
 being explored
 (see talk by
 Robert Harrington)

Overlay MC for pp Physics

- One example: "Search for Higgs decay to long-lived particles"
 - Reconstruct displaced vertex in muon system
 - Background from punch-through jets and cavern background hits

ATLAS Upgrade Studies Using Overlay

- Cavern background is nicely modeled in overlay
- Overlay multiple zerobias data events to simulate higher luminosity!
 - Noise is double-counted, but negligible in the muon system
 - Validated using 3 low-luminosity events compared to 3x luminosity data
- Saturation of MDT End-cap Inner tubes confirmed
 - Helped to motivate New Small Wheel Upgrade

Heavy Ion Simulation Using Overlay

- Almost no pileup in heavy-ion collisions, but...
 - Underlying event is huge, difficult and costly to simulate!
- Use (minbias) HI data, overlay hard parton interaction simulated at the same event vertex position
 - ~20M HI overlay MC events produced
 - Used for many HI results successfully ...

Measurement of the correlation of jets with high pT isolated prompt photons in lead-lead collisions at sqrt(s)=2.76 TeV

Conclusions

- ATLAS uses several methods for modeling pileup and other detector backgrounds in our simulation
 - Simulated Pythia8 minbias is currently used for most simulations
 - Embedding is used for specialized studies, e.g. for $Z \rightarrow \tau\tau$
 - Overlay is an alternate method, currently used for some performance studies, pp and HI physics analyses, and detector upgrade studies
- Working to improve accuracy and speed of all these methods
- Pileup will become increasingly important with larger inst. luminosity
- We must model pileup efficiently to simulate larger datasets

Backup

Pile-up Digitization: vmem breakdown

One approach to save memory under validation is to filter truth info in the background HITS files.

Algorithm and PileUpTools Approaches to Pile-up Digitization

Simulating Pileup: Pythia8+GEANT4

Impacts of Pileup

- Jet offsets from pile-up are modelled to <50%
- Remaining differences from BCID-to-BCID beam current variation were not modelled in 2011 MC

