.

1 / 16

Muon Simulation and Cavern Background Draft for LPCC Detection Simulation Workshop March 18-19, 2014

Piet Verwilligen

INFN Sezione di Bari

Simulation Meeting 2014-03-14

Disclaimers

- I give this presentation not on behalf of the CMS Muon Community.
- This presentation is about the machinery for the simulation of Neutron background in the Muon System and will show it works.
- Simulation results here are only for illustration, are not approved by the Muon Community and hence can not be used as CMS result.
- ▶ We will start investigating those results soon and interpret them in the context of background rates, compare to data, ...
- This is just the start of the work

Introduction :: Neutron Background

Illustration

One minimum bias event generated with Pythia 6 and simulated in one quadrant of CMS by GEANT 3.21 in CMSIM. Products tracked to 1 sec after collision. [Tim Cox, UC Davis, 1998]]

(green) dashed line for muons (yellow) dotted line for Čerenkov photons

Physics Processes

- pp-collisions induce hadronic cascades in HCAL, Absorbers
- ► End product are long-living neutrons of O(100 MeV) which are then moderated to O(MeV)
- ${}^{1}_{0}n$ propagate through steel
- CMS embedded in a 1_0n gas
- neutrons are captured in nuclei, emitting a γ of O(0.5-10 MeV)
- γ produces e[±] of O(MeV) through Compton scattering or Photo-electric effect
- b hits in muon chambers due to elastic (n,p) collisions (in gas) or from γ → e[±] (inside & close to muon chamber) (dominant process)

Introduction :: Impact on Muon Detectors

Cathode Strip Chamber

Pattern Recognition

Impact on Muon Detectors

- Precision Chambers (DT,CSC)
 - multiple gas layers (6-12)
 - reconstruct 3D track stubs
 - e^{\pm} do not penetrate all layers
 - bckgnd hits cannot make track stub
 - bkgnd hits can disturb measurement
- Timing Chambers (RPC)
 - double gas, single readout layer
 - reconstruct 2D hits
 - all charged particles make hits
 - hits disturb p_T measurement in Pattern Recognition (PAC)

Implementation in Simulation

- CSC, DT :: no background hits
- RPC :: bkg hits + intrinsic noise

Introduction :: Simulation Tools

FLUKA — current simulation tool

GEANT4 — possible future simulation tool?

- Passage of partices through matter
- Simulation of the detector response of gen. events
- So far used for Signal and Min Bias (PU) events
- E_{dep} in sensitive volumes (simhits)
- ► Simhits digitized → electronic signals
- Can be used to predict Hit Rates
- Mix Signal + Neutron Background + Pile Up

Introduction :: Muon Upgrade

Run-I) œ 700 All SimHits 1000 Z (cm) All SimHits 200 400 800 1000 Z (cm) 600

Pre-LS1 high rates in ME4/2, lower in Post-LS1 (YE4 Shielding)

Results :: E_{kin} vs tof :: XS & 2015

GEANT Simulation

- CMS 2015 Detector Geom
- GEANT 4.9.6
- XS & HP Physics List: FTFP_BERT_XS_EML FTFP_BERT_HP_EML
- 2500 Minimum Bias Events up to 100 ms (>< 500 ns)
- Time Of Flight vs Ekin
- Limit of 250 ns chosen arbitrarily
- tof > 250 ns neutron hits
- tof < 250 ns prompt & decay</p>

Particle Range (CSC)

ProdCutsForGamma = 25.*mm ProdCutsForElectrons = 1.*mm ProdCutsForPositrons = 2.5*m

E_{kin} vs tof in CSC

・ロト ・聞 ト ・ヨト ・ヨト

Similar plots available for DT & RPC

Results :: RZ & E_{dep} vs tof :: XS & 2015

RZ-view

 $\mathsf{E}_{\mathsf{dep}}$ vs tof in CSC

8 / 16

Results :: XS vs HP physics list :: 2015

Time of flight of all simhits

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

10 / 16

Results :: XS vs HP physics list :: 2015

(日)、

э

Results :: CMS Geometry for 2012 vs 2015 :: Endcaps

all stations

4th station

) < (~

Challenges :: Geometry

 for CSC and DT the inclusion of neutron hits is straight forward but

- DT simulation will also benefit from introduction of dead channels (not implemented now)
- DT are slow ... signal integration over 16BX (current sim is ±3BX)
- DT, RPC and CSC observe
 φ-asymmetry due to cavern floor:
 - tests of new geometry ongoing
- RPC Digitization is parametrized:
 - only muon hits are digitized
 - close-by electron hits (δ) are inside Clustersize parametrization
 - background electron hits are included in Noise parametrization
 - need to be desentangled
- RPC consist of single layer of Bakelite-Gas-Bakelite sandwich:
 - 50 % of gas volume implemented
 - need to be improved in order to have same infrastructure for DT,CSC & RPC

イロト 不得 トイヨト イヨト

-

Challenges :: Geometry

- for CSC and DT the inclusion of neutron hits is straight forward but
 - DT simulation will also benefit from introduction of dead channels (not implemented now)
 - DT are slow ... signal integration over 16BX (current sim is ±3BX)
- DT, RPC and CSC observe
 φ-asymmetry due to cavern floor:
 - tests of new geometry ongoing
- RPC Digitization is parametrized:
 - only muon hits are digitized
 - close-by electron hits (δ) are inside Clustersize parametrization
 - background electron hits are included in Noise parametrization
 - need to be desentangled
- RPC consist of single layer of Bakelite-Gas-Bakelite sandwich:
 - 50 % of gas volume implemented
 - need to be improved in order to have same infrastructure for DT,CSC & RPC

Challenges :: Comparison w.r.t Data

https://twiki.cern.ch/twiki/bin/view/CMSPublic/RPCPlots

Improvements: Cls, ProdCuts

At instantaneous luminosity of $\mathcal{L} = 0.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$:

- Barrel: 1.4 Hz/cm² in Simulation vs 1.8 Hz/cm² in Data
- Endcap: 2.6 Hz/cm² in Simulation vs 4.8 Hz/cm² in Data
- Total: 1.8 Hz/cm² in Simulation vs 3.0 Hz/cm² in Data

13 / 16

Conclusions & Outlook

- Neutron background will be important background at the LHC at higher Energies and higher Instantaneous Luminosities
- GEANT4 Simulation of neutrons has improved over the years and can be reliable to predict neutron background events in CMS
- First steps towards unified integration of Neutron background in the 3 muon systems of CMS: DT, CSC & RPC are made:
 - Understand background components
 - Comparison XS physics list with HP physics list
 - Comparison with Data ongoing, discussion in Muon Community about to start
- Will drive more development in implementation of the simulation:
 - Double-Gap geometry for RPC detectors
 - Investigate Energy cut-offs
 - Implement realistic Cavern
 - Improve Digitization model

Understand & predict current backgrounds pave the way for HL-LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks

I would like to thank:

CMS Simulation group:

- for support and help with generation of the events: Vladimir Ivantchenco
- for useful discussions: Vladimir Ivantchenco, David Lange, Mike Hildreth

CMS Muon DPG conveners:

- Tim Cox, Francesca Cavallo, Alberto Ocampo for useful discussions
- People working on Neutron backgrounds in CMS in the past:
 - Tim Cox, Rick Wilkinson, Vadim Khotilovich, Alexei Safanov, ...
 - they paved the way and did great progress and without them this was not possible

Back up :: RZ-view simhit plots :: lots to learn

0 < tof < 50 ns

 $50 < tof < 250 \, ns$

250 **ns** < **tof**

- Mostly e[±] hits
- Single hadron hit (but not enough?)
- $\quad \quad \frac{n \to p}{n \to \gamma \to e} \approx \mathcal{O}(10^3)$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの