Hadronic cross sections and multiplicities in LHCb's simulation software

Pescatore L.

LPCC Workshop

luca.pescatore@cern.ch

March 14, 2014

- Main focus for LHCb:
 - \rightarrow single particle interaction
 - \rightarrow part/antipart asymmetries
 - ightarrow low p_t
- Unlike ATLAS and CMS: high p_T and jets
- Many of LHCb measurements are related to asymmetries and detector modelling enters in systematics
- Reliable simulation can help to lower systematics

What are important quantities to study?

- Study part/antipart cross section ratio
 → can affect detection efficiency
- Study multipicity and composition of inelastic daughters.
 - \rightarrow Number of particles in the detector and type can affect reconstruction

What we use, what we used and how we check it

- LHCb framework (Gauss) currently uses Geant4 v9.5p02
- validation just started for v9.6p02.
- Physics List \rightarrow LHEP (used until 2012), FTFP_BERT (in use now), QGSP_BERT

2-level checks:

- First step: checks directly on Geant4:
 - \rightarrow Quickly and cleanly highlight Physics List changes
- Second step study hadronic interaction using full LHCb framework:
 - \rightarrow technical handling of PLs/options/geometry directly by production system
 - \rightarrow validation not only of Geant4 but also our production system

Geant4 Examples

- Using standalone Geant4 examples.
 - Example code released with each version of Geant4.
 - Built in LHCb environment.
 - Doesn't rely on full LHCb simulation software.
- Hadr00 example used to test interaction cross-sections for different physics lists

Validation

- Useful validation check for new Geant4 release.
 - Quickly highlights any changes in physics lists
- Comparing Geant4 v9.5.p02 and v9.6.p02

Comparison of FTFP_BERT physics list with Geant4 9.5.p02 and Geant4 9.6.p02

臣

 \mathcal{A}

< ⊒ >

▲ 🗇 🕨 🔺 🖻 🕨

◀ □ ▶

Using the LHCb framework

Main focus in region before RICH2. \rightarrow where hadronic interaction can affect reconstruction

Interaction probability

 $P_{int} = N_{int}/N_{gen}$

Geant4 provides process ID:

- 111 = elastic
- 121 = inelastic

 $N_{gen} = 100$ k events

Particle guns:

- Materials:
 - Al, Si (silicon trackers), Be (beampipe)
- Thickness: 1mm, 10mm, 50mm Material upstream RICH2 $\sim 0.6 X_0$, so verify stable to at least 5cm Al

EM physics list is always kept the same (P. Griffith talk this morning for EM physics)

Using simplified geometry	Cross section		
• Particles created in a vacuum	For data comparison (valid for thin layers)		
 Particles interact in a box of uniform material 	$\sigma_{int} = P_{int} \cdot \frac{\pi}{\rho N_A \Delta x} \cdot 10^{-24}$ • $\Delta x \rightarrow \text{thickness}$		
 No δ-rays simulated (to avoid counting artifacts) 	• ρ and A of material • $10^{-24} \rightarrow$ conversion to barn		
Pescatore L (University of Birmingham) Hadronic	hysics March 15, 2014 7 / 28		

Inelastic probability of interaction (P_{int}^{inel}) (FTFP_BERT)

Inelastic cross sections in 1mm

Lots of probabilities of interaction for different combinations of pguns/materials/etc...

- \rightarrow possibility of check against older versions
- \rightarrow in principle possibility to check against data

Pescatore L. (University of Birmingham)

Comparison FTFP_BERT / LHEP

Antiproton at low energy is the point of biggest disagreement

Comparison with data p/\bar{p} in 10mm Al

Inelastic cross sections in 10mm

Comparing with COMPASS data (as available) For both model good agreement with data for pFTFP_BERT has better agreement for low energy \bar{p}

Pescatore L. (University of Birmingham)

Hadronic physics

Comparison with data p/\bar{p} in 10mm Be

Inelastic cross sections in 10mm

Good agreement with data for *p*, FTFP_BERT slightly better Agreement gets a little worse for smaller thicknesses

Pescatore L. (University of Birmingham)

Hadronic physics

Cross sections in the PDG

- Z^{ab} , Y_1^{ab} and Y_2^{ab} are characteristic of each type of collision
- For nuclei average over the number of neutrons and protons in the nucleus

Proj / Targ	Z ^{ab}	Y_1^{ab}	Y_2^{ab}
<u></u> р,р / р	34.71	12.72	7.35
π^{\pm} / p	19.02	9.22	1.75
К± / р	16.56	4.02	3.39
K^{\pm} / n	16.49	3.44	1.82
p ,p / n	35.00	12.19	6.62

Particle-antiparticle asymmetry is contained in the last term (Y_2^{ab}) .

Becomes less important at high energies \rightarrow so a net asymmetry is expected found at low energies

Adding PDG to the game

Total cross section: inelastic + elastic All ratios refer to collisions in 1mm of Al.

PDG agrees definitely better with FTFP at low energies

Caveat: maybe systematic due to PDG reports cross sections on p and n, not Al directly.

Adding PDG to the game

Total cross section: inelastic + elastic All ratios refer to collisions in 1mm of Al.

Again PDG agrees definitely better with FTFP at low energies

Detection asymmetry saga

- From previous 9.4.patch02 production setup in LHCb (LHEP list)
 - Kaon asymmetry looks ok.
 - Pion asymmetry way off.

J. Van Tilburg

erc

(LHEP G4 9.5p02) asymmetries

- Using 9.5.patch02 setup in LHCb (LHEP list)
 - Nominally unchanged G4 physics
- Kaon asymmetry for low momentum now too high
- Pion asymmetry further off
- At one level, should not worry as we will not use this PL, but...

J. Van Tilburg

erc

High (FTFP_BERT G4 9.5p02) asymmetries

- Using 9.5.patch02 setup in LHCb (FTFP_BERT list)
- Kaon asymmetry too low (esp. for high momentum).
- Pion asymmetry is ok now (note changed A_{π} scale cf. previous slide)

J. Van Tilburg

erc

Measurement of $A_{K\pi}$ in LHCb

Measure of detection asymmetry in LHCb \rightarrow good possibility to compare with MC

$$A_{K\pi} = \frac{\epsilon(K^+\pi^-) - \epsilon(K^-\pi^+)}{\epsilon(K^+\pi^-) + \epsilon(K^-\pi^+)}$$
(3)

- Needed for CP violation measurements with odd number of kaons
- Measured in data using prompt charm decays
- Many possible: D have high rate (5M $D \rightarrow K_S \pi$)
- Allows to measure $A_{K\pi}$ down to $\sim 5 \times 10^{-4}$ level.
- Needs correction for PID asymmetry
- In approval just today (will be on arXiv in a few weeks).

$$\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = \frac{N(D^- \to K^+\pi^-\pi^-)}{N(D^+ \to K^-\pi^+\pi^+)} \times \frac{D^+ \to K^0_{\mathcal{S}}\pi^+}{D^- \to K^0_{\mathcal{S}}\pi^-}$$
(4)

Multiplicity and composition of daughters

- Number of particles can affect reconstruction
- Only direct inelastic daughters counted
- Using 9.5p02 + patch for K cross section ported from 9.76, provided by G5 team
- Next plots showing average multiplicities as a function of energy
- Average multiplicity is not thickness dependent (good check of method)

Multiplicity: LHEP and FTFP_BERT

- Neutral and charged particles counted.
- Something going on with LHEP at 10GeV?
 - \rightarrow Maybe junction of different models? (Should be at 25 GeV)
- N.B.: In FTFP_BERT especially at low energy multiplicity produced by parti/antipart is very different
 - \rightarrow can this affect reconstruction efficiency?

Pescatore L. (University of Birmingham)

Hadronic physics

Percentage of particle produced

- Most of the particles are positive and neutral especially at low energy
- Negative particles produce more negatives daughters
- Hierarchy is same for all models \rightarrow positive (40-50%) < neutral (30-40%) < negative

Percentage of neutral particles

Composition of daughters LHEP/FTFP_BERT

Percentage of daughter ID in 100 GeV \bar{p} inelastic collisions in 5mm Al

LHEP

FTFP_BERT

- As expected mostly p/\bar{p} , n and pions of the three kind
- "Others" includes mostly heavy nuclei
- γ production is biggest difference with LHEP

Composition of daughters LHEP/FTFP_BERT

Percentage of daughter ID in 100 GeV p inelastic collisions in 5mm Al

ID of daughters (only inelastic, no heavy nuclei)

LHEP

FTFP_BERT

- With FTFP_BERT 15-20% of γ are produced and this lowers mostly the percentage of pions.
- Baryon / meson ratio changes too! $n_{(p,\bar{p},n)}/n_{(\pi^+,\pi^-,\pi^0)} \sim 0.5 \rightarrow \sim 1$

Neutral multiplicity counting and not counting gammas.

In this way mean value corresponds but energy dependence still very different.

Multiplicity of γ produced

- Similar for all incoming particles
- Reaches saturation after \sim 10GeV for all incoming particles.

Composition of daughters QGSP_BERT/FTFP_BERT

Percentage of daughter ID in 100 GeV p inelastic collisions in 5mm Al

$\mathsf{QGSP}_\mathsf{BERT}$

FTFP_BERT

- γ still abundantly produced.
- Baryon / meson ratio goes back to LHEP. $n_{(p,\bar{p},n)}/n_{(\pi^+,\pi^-,\pi^0)} \sim 0.4$

Daughter ID in 10GeV p inelastic collisions in 1 mm Al (only heavy nuclei)

Distribution of kinetic energy of daughters (both neutral and charged), excluding heavy nuclei

Distribution of kinetic energy of γ produced in inelastic p collision in 1mm Al (using FTFP_BERT).

- Current LHCb production uses FTFP_BERT with CHIPS cross-sections in Geant4 9.5p02
- Just started testing Geant4 9.6p02
- FTFP_BERT seems to perform generally well (cross section-wise)
 → Pion/proton asymmetries improved but kaon asymmetries can still be improved
- We qualitatively see smoother behaviour in FTFP_BERT multiplicities
 → comparison with data would be interesting
- More data required for reliable comparison
 - \rightarrow we'll use more data for the next validation
 - \rightarrow paper measuring kaon detection asymmetry in LHCb coming soon

Back-up slides

Kinetic Energy of γ daughters

10 GeV p collisions in Be with $FTFP_BERT$.

E of gammas

Inelastic probability of interaction (P_{int}^{inel}) (LHEP)

Inelastic cross sections in 1mm

Lots of probabilities of interaction for different combinations of $\mathsf{pguns}/\mathsf{materials}/\mathsf{etc}...$

- \rightarrow possibility of check against older versions
- \rightarrow in principle possibility to check against data

Pescatore L. (University of Birmingham)

Cross sections for particles (LHEP)

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\textit{inel}}$ (mb)	N^{el}/N^{gen} (10 ⁻³)	$\sigma_{el}~({\rm mb})$
	PGun en	ergy = 10 GeV		
	Thick	mess = 1mm		
π^+ in Al	1.86 ± 0.19	309 ± 32	0.78 ± 0.12	129 ± 21
K^+ in Al	1.70 ± 0.18	282 ± 31	0.20 ± 0.06	33 ± 10
p in Al	2.72 ± 0.23	451 ± 39	1.08 ± 0.15	179 ± 24
	Thickn	ess = 10mm		
π^+ in Al	21.32 ± 0.65	354 ± 11	8.28 ± 0.41	137 ± 7
K^+ in Al	16.42 ± 0.57	272 ± 9	3.00 ± 0.24	50 ± 4
p in Al	26.60 ± 0.72	441 ± 12	12.52 ± 0.50	208 ± 8
	PGun en	ergy = 50 GeV		
	Thick	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		
π^+ in Al	1.72 ± 0.19	285 ± 31	0.78 ± 0.12	129 ± 21
K^+ in Al	1.60 ± 0.18	265 ± 30	0.16 ± 0.06	27 ± 9
p in Al	3.06 ± 0.25	508 ± 41	0.96 ± 0.14	159 ± 23
Thickness = 10mm				
π^+ in Al	20.68 ± 0.64	343 ± 11	6.04 ± 0.35	100 ± 6
K^+ in Al	17.14 ± 0.58	284 ± 10	2.76 ± 0.23	46 ± 4
p in Al	26.16 ± 0.71	434 ± 12	10.98 ± 0.47	182 ± 8

Cross sections for antiparticles (LHEP)

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\mathit{inel}}~(mb)$	N^{el}/N^{gen} (10 ⁻³)	σ_{el} (mb)
	PGun e	nergy = 1GeV		
	Thick	mess = 1mm		
π^- in Al	2.78 ± 0.24	461 ± 39	1.56 ± 0.18	259 ± 29
K^- in Al	2.72 ± 0.23	451 ± 39	1.68 ± 0.18	279 ± 30
₽ in Al	8.08 ± 0.40	1341 ± 66	5.34 ± 0.33	886 ± 54
	Thickn	ess = 10mm		
π^- in Al	27.74 ± 0.73	460 ± 12	15.16 ± 0.55	252 ± 9
K^- in Al	29.24 ± 0.75	485 ± 13	18.28 ± 0.60	303 ± 10
₽ in Al	78.58 ± 1.20	1304 ± 20	50.02 ± 0.97	830 ± 16
	PGun e	nergy = 5GeV		
	Thick	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		
π^- in Al	2.00 ± 0.20	332 ± 33	1.04 ± 0.14	173 ± 24
K^- in Al	2.14 ± 0.21	355 ± 34	0.34 ± 0.08	56 ± 14
₽ in Al	4.36 ± 0.29	723 ± 49	1.82 ± 0.19	302 ± 32
Thickness = 10mm				
π^- in Al	22.08 ± 0.66	366 ± 11	10.44 ± 0.45	173 ± 8
K^- in Al	21.10 ± 0.64	350 ± 11	3.76 ± 0.27	62 ± 5
₽ in Al	41.64 ± 0.89	691 ± 15	17.34 ± 0.58	288 ± 10

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\it inel}~({\rm mb})$	N^{el}/N^{gen} (10 ⁻³)	σ_{el} (mb)
	PGun en	ergy = 10 GeV		
	Thick	mess = 1 mm		
π^- in Al	2.24 ± 0.21	372 ± 35	0.94 ± 0.14	156 ± 23
K^- in Al	1.82 ± 0.19	302 ± 32	0.40 ± 0.09	66 ± 15
₽ in Al	3.62 ± 0.27	601 ± 45	1.20 ± 0.15	199 ± 26
	Thickn	ess = 10mm	-	
π^- in Al	22.68 ± 0.67	376 ± 11	8.24 ± 0.40	137 ± 7
K^- in Al	18.50 ± 0.60	307 ± 10	2.92 ± 0.24	48 ± 4
₽ in Al	33.96 ± 0.81	564 ± 13	10.92 ± 0.46	181 ± 8
	PGun en	ergy = 50GeV	-	
	Thick	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		
π^- in Al	2.02 ± 0.20	335 ± 33	0.78 ± 0.12	129 ± 21
κ^- in Al	2.04 ± 0.20	339 ± 33	0.20 ± 0.06	33 ± 10
₽ in Al	2.50 ± 0.22	415 ± 37	0.92 ± 0.14	153 ± 22
Thickness = 10mm				
π^- in Al	22.24 ± 0.66	369 ± 11	5.84 ± 0.34	97 ± 6
K^- in Al	19.68 ± 0.62	327 ± 10	2.66 ± 0.23	44 ± 4
₽ in Al	29.82 ± 0.76	495 ± 13	8.76 ± 0.42	145 ± 7

Inelastic probability of interaction for antiparticles (LHEP)

Inelastic cross sections in 1mm

Multiplicities for particles

PGun in Material	< Mult >	RMS			
PGun energy = 1 GeV					
Thickne	ss = 1mm				
₽ in Al	10.96	4.37			
K^- in Al	11.63	6.29			
π^- in Al	8.95	4.40			
Thickne	ss = 10mm				
p̄ in Al	11.11	4.62			
K^- in Al	11.19	6.31			
π^- in Al	8.68	3.62			
PGun ene	ergy = 5GeV				
Thickne	ss = 1mm				
₽ in Al	14.42	5.77			
K^- in Al	14.04	6.10			
π^- in Al	14.14	6.18			
Thickness = 10mm					
p̄ in Al	14.36	5.94			
K^- in Al	13.86	5.57			
π^{-} in Al	13.83	5.80			

PGun in Material	< Mult $>$	RMS			
PGun ene	$PGun\ energy = 10GeV$				
Thickne	ess = 1mm				
₽ in Al	9.71	3.94			
K^- in Al	10.04	3.85			
π^- in Al	9.40	4.14			
Thickne	ss = 10mm				
₽ in Al	10.11	3.87			
K^- in Al	9.86	4.05			
π^- in Al	9.85	4.10			
PGun ene	rgy = 50GeV				
Thickne	ess = 1mm				
₽ in Al	14.08	5.86			
K^- in Al	14.69	6.37			
π^- in Al	15.77	9.23			
Thickness = 10mm					
₽ in Al	14.41	6.80			
K^- in Al	15.12	7.05			
π^- in Al	16.32	7.89			

Pescatore L. (University of Birmingham)

March 14, 2014 35 / 28

Cross sections for particles (FTFP_BERT)

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\textit{inel}}$ (mb)	N^{el}/N^{gen} (10 ⁻³)	$\sigma_{el}~({\rm mb})$
	PGun er	nergy = 1GeV		
	Thick	mess = 1mm		
π^+ in Al	2.60 ± 0.23	431 ± 38	0.84 ± 0.13	139 ± 21
K^+ in Al	2.28 ± 0.21	378 ± 35	0.70 ± 0.12	116 ± 20
p in Al	2.28 ± 0.21	378 ± 35	0.70 ± 0.12	116 ± 20
	Thickn	ess = 10mm		
π^+ in Al	29.08 ± 0.75	483 ± 12	7.92 ± 0.40	131 ± 7
K^+ in Al	24.68 ± 0.69	410 ± 12	7.94 ± 0.40	132 ± 7
p in Al	24.68 ± 0.69	410 ± 12	7.94 ± 0.40	132 ± 7
	PGun er	nergy = 5 GeV		
	Thick	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		
π^+ in Al	2.40 ± 0.22	398 ± 36	0.76 ± 0.12	126 ± 20
K^+ in Al	2.72 ± 0.23	451 ± 39	0.48 ± 0.10	80 ± 16
p in Al	2.72 ± 0.23	451 ± 39	0.48 ± 0.10	80 ± 16
Thickness = 10mm				
π^+ in Al	22.28 ± 0.66	370 ± 11	7.24 ± 0.38	120 ± 6
K^+ in Al	26.08 ± 0.71	433 ± 12	7.18 ± 0.38	119 ± 6
p in Al	26.08 ± 0.71	433 ± 12	7.18 ± 0.38	119 ± 6

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\textit{inel}} \ ({\sf mb})$	N^{el}/N^{gen} (10 ⁻³)	$\sigma_{el}~({\rm mb})$	
	PGun energy = 10GeV				
	Thick	ness = 1mm			
π^+ in Al	2.10 ± 0.20	348 ± 34	0.84 ± 0.13	139 ± 21	
K^+ in Al	3.06 ± 0.25	508 ± 41	0.76 ± 0.12	126 ± 20	
p in Al	3.06 ± 0.25	508 ± 41	0.76 ± 0.12	126 ± 20	
	Thickn	ess = 10mm			
π^+ in Al	21.24 ± 0.64	352 ± 11	5.68 ± 0.34	94 ± 6	
K^+ in Al	26.26 ± 0.72	436 ± 12	6.74 ± 0.37	112 ± 6	
p in Al	26.26 ± 0.72	436 ± 12	6.74 ± 0.37	112 ± 6	
	PGun en	ergy = 50GeV			
	Thick	ness = 1mm			
π^+ in Al	1.86 ± 0.19	309 ± 32	0.70 ± 0.12	116 ± 20	
κ^+ in Al	2.88 ± 0.24	478 ± 40	0.68 ± 0.12	113 ± 19	
p in Al	2.88 ± 0.24	478 ± 40	0.68 ± 0.12	113 ± 19	
	Thickness = 10mm				
π^+ in Al	20.78 ± 0.64	345 ± 11	5.14 ± 0.32	85 ± 5	
κ^+ in Al	26.12 ± 0.71	433 ± 12	6.78 ± 0.37	113 ± 6	
p in Al	26.12 ± 0.71	433 ± 12	6.78 ± 0.37	113 ± 6	

Cross sections for antiparticles (FTFP_BERT)

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\textit{inel}}$ (mb)	N^{el}/N^{gen} (10 ⁻³)	$\sigma_{el}~({\rm mb})$
	PGun e	nergy = 1GeV		
	Thick	mess = 1mm		
π^- in Al	2.38 ± 0.22	395 ± 36	0.92 ± 0.14	153 ± 22
K^- in Al	2.98 ± 0.24	494 ± 40	1.14 ± 0.15	189 ± 25
₽ in Al	4.80 ± 0.31	796 ± 51	1.64 ± 0.18	272 ± 30
	Thickn	ess = 10mm		
π^- in Al	27.06 ± 0.73	449 ± 12	8.20 ± 0.40	136 ± 7
K^- in Al	29.90 ± 0.76	496 ± 13	10.60 ± 0.46	176 ± 8
₽ in Al	44.34 ± 0.92	736 ± 15	13.36 ± 0.51	222 ± 9
	PGun e	nergy = 5GeV		
	Thick	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		
π^- in Al	2.66 ± 0.23	441 ± 38	0.66 ± 0.11	110 ± 19
K^- in Al	2.12 ± 0.21	352 ± 34	0.12 ± 0.05	20 ± 8
₽ in Al	3.84 ± 0.28	637 ± 46	1.12 ± 0.15	186 ± 25
Thickness = 10mm				
π^- in Al	22.78 ± 0.67	378 ± 11	6.76 ± 0.37	112 ± 6
K^- in Al	19.86 ± 0.62	330 ± 10	2.24 ± 0.21	37 ± 4
₽ in Al	36.00 ± 0.83	597 ± 14	9.92 ± 0.44	165 ± 7

PGun in Material	N^{inel}/N^{gen} (10 ⁻³)	$\sigma_{\it inel}~({\rm mb})$	N^{el}/N^{gen} (10 ⁻³)	$\sigma_{el}~({\rm mb})$
	PGun en	ergy = 10 GeV		
	Thick	mess = 1mm		
π^- in Al	1.86 ± 0.19	309 ± 32	0.52 ± 0.10	86 ± 17
K^- in Al	1.86 ± 0.19	309 ± 32	0.18 ± 0.06	30 ± 10
₽ in Al	3.08 ± 0.25	511 ± 41	1.06 ± 0.15	176 ± 24
	Thickn	ess = 10mm		
π^- in Al	20.02 ± 0.63	332 ± 10	5.94 ± 0.34	99 ± 6
K^- in Al	20.32 ± 0.63	337 ± 10	1.94 ± 0.20	32 ± 3
₽ in Al	32.64 ± 0.79	542 ± 13	9.60 ± 0.44	159 ± 7
	PGun en	ergy = 50GeV		
	Thick	mess = 1mm		
π^- in Al	2.22 ± 0.21	368 ± 35	0.60 ± 0.11	100 ± 18
K^- in Al	1.74 ± 0.19	289 ± 31	0.06 ± 0.03	10 ± 6
₽ in Al	2.98 ± 0.24	494 ± 40	0.84 ± 0.13	139 ± 21
Thickness = 10mm				
π^- in Al	20.02 ± 0.63	332 ± 10	5.50 ± 0.33	91 ± 5
K^- in Al	18.78 ± 0.61	312 ± 10	1.66 ± 0.18	28 ± 3
₽ in Al	30.56 ± 0.77	507 ± 13	7.60 ± 0.39	126 ± 6

Inelastic probablility of interaction for particles (FTFP_BERT)

Inelastic cross sections in 1mm

Inelastic probablility of interaction for antiparticles (FTFP_BERT)

Inelastic cross sections in 1mm

Multiplicities for particles (FTFP_BERT)

PGun in Material	< Mult >	RMS			
$PGun\ energy = 1GeV$					
Thickne	ess = 1mm				
π^+ in Al	10.43	4.39			
K^+ in Al	8.11	2.85			
p in Al	8.11	2.85			
Thickne	ss = 10mm				
π^+ in Al	10.19	4.26			
K^+ in Al	8.27	3.05			
p in Al	8.27	3.05			
PGun ene	ergy = 5GeV				
Thickne	ss = 1mm				
π^+ in Al	16.36	5.28			
K^+ in Al	14.85	7.39			
p in Al	14.85	7.39			
Thickness = 10mm					
π^+ in Al	16.55	6.13			
K^+ in Al	14.38	6.84			
p in Al	14.38	6.84			

PGun in Material	< Mult >	RMS		
PGun energy = 10GeV				
Thickness = 1mm				
π^+ in Al	17.10	4.74		
\mathcal{K}^+ in Al	18.68	7.15		
p in Al	18.68	7.15		
Thickness = 10mm				
π^+ in Al	18.39	6.18		
κ^+ in Al	17.72	6.52		
p in Al	17.72	6.52		
PGun energy = 50GeV				
Thickness = 1mm				
π^+ in Al	22.80	5.85		
κ^+ in Al	22.24	8.49		
p in Al	22.24	8.49		
Thickness = 10mm				
π^+ in Al	22.88	7.52		
κ^+ in Al	22.62	8.56		
p in Al	22.62	8.56		

Pescatore L. (University of Birmingham)

March 14, 2014 42 / 28

Multiplicities for antiparticles (FTFP_BERT)

PGun in Material	< Mult >	RMS		
PGun energy = 1GeV				
Thickness = 1mm				
π^- in Al	10.14	4.60		
K^- in Al	11.26	4.02		
₽ in Al	4.85	1.58		
Thickness = 10mm				
π^- in Al	10.43	4.36		
K^- in Al	10.57	4.16		
₽ in Al	5.08	1.53		
PGun energy = 5GeV				
Thickness = 1mm				
π^- in Al	15.95	6.37		
K^- in Al	16.39	6.24		
₽ in Al	6.15	2.02		
Thickness = 10mm				
π^- in Al	16.93	6.37		
K^- in Al	16.20	6.43		
₽ in Al	6.59	2.16		

PGun in Material	< Mult >	RMS	
$PGun\ energy = 10GeV$			
Thickness = 1mm			
π^- in Al	17.71	6.35	
K^- in Al	17.68	5.36	
₽ in Al	12.95	5.67	
Thickness = 10mm			
π^- in Al	18.10	5.92	
K^- in Al	18.19	5.92	
₽ in Al	13.74	6.32	
PGun energy = 50GeV			
Thickness = 1mm			
π^- in Al	23.61	7.79	
K^- in Al	23.31	6.95	
₽ in Al	16.38	6.48	
Thickness = 10mm			
π^- in Al	22.69	7.52	
K^- in Al	23.24	7.55	
₽ in Al	17.13	7.67	

Pescatore L. (University of Birmingham)

March 14, 2014 43 / 28