MIMOSA 23 SETTINGS

Elena Rocco Nikhef-Utrecht University 24th October 2013

Current status

- Detector in use: FoCal prototype; 24 layers, 96 chips (MIMOSA 23)
- Non uniform response: from the testbeam data analysis we noticed that we have large variation in sensitivity from chip to chip
- Settings in use: settings used during the test beam:
 Vref2=80 Vref1 optimised per single chip
- Tests in lab:
 - "pedestal" measurements -> systematic studies in Vref1 and Vref2
 - Cosmic data taking (for given threshold settings to study the MIP response)
- Only digital R/0 available (no voltage reading)

Open points (1)

 Impossibility to get the discriminator transfer function normalised from 0 to 1

Fraction firing pixels (new definition) chips 8-11, Vref1=SPS-settings

Open point (2)

 The normalisation of the firing pixels to 1 hides possible pathological behaviour

Open point (3)

Different Vref1 settings -> different discriminator transfer functions

Open point (3) another example

chip 11

Open point (4): unbalance left-right

All the chips have Vref2=80: unexpected unbalance!!!
Some unbalanced chips present hot columns/rows/pixels

Open point (4)

Scan in Vref2 looking at the unbalance left-right

Balance of chip 8

Open point (4) another example

Scan in Vref2 looking at the unbalance left-right

Balance of chip 9

Which is the procedure to get the best Vref2 value then?

Open point (5)

The discriminator transfer function fit

From the paper (NIM A 602 (2009) 461-466). ".. One can fit with an erf (error function) to this curve. Its derivative gives a gaussian (normal) distribution.the FWHM is ~2.35 σ , and its mean give the offset of the comparator, where σ is the rms temporal noise."

Question: can we do the same operation but with the digital readout?

Open point (6): clustersize (chip 8&9)

Open point (6): clustersize (chip 10&11)

More questions might come....

THANK YOU!