### Lego Train Optimization

Costin Grigoras, Jan Fiete Grosse-Oetringhaus, Markus Zimmermann

07/11/2013

Markus Zimmermann Lego Train Optimization 1

- improvement suggestions
- stop to slow jobs
- Dataset consolidation
- Optimizing splitting parameters

- analyze performance of a train run and notify the operator automatically if something could be improved for the next train runs
- notify operator if
  - more than 5% of the jobs are in the same error state
  - more than 10% of all the jobs are in an error state
  - the train jobs finish very quickly: the splitting parameter could be increased and the ttl decreased
  - the train jobs finish very slowly: the splitting parameter could be decreased and the ttl increased
    - 95% of the jobs are finished after 56m 56s, the number of files per job (SplitMaxInputFileNumber) can be increased.

Improvement suggestions Most of the jobs (95% after 56m 56s) are finished faster than 1/3 of the time to life (TTL) of the jobs. To get the results faster the TTL could be
reduced in the dataset configuration. Now the TTL is 12:00. We suggest twice the time after which 95% of the jobs had finished: 1:53 (= 6833s).

#### Figure 1: Improvement suggestion for a finished train run.

# Stop to slow jobs

- If a train has >90% of jobs in a final state and >85% of jobs in DONE, the remaining waiting jobs can run at any site (not only at the sites where the data is)
- if a train has >98% jobs in a final state, the remaining running jobs (at max 2%) are stopped.

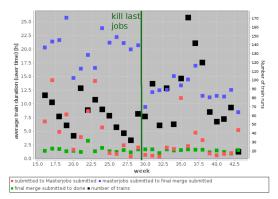



Figure 2: Train performance of the last 6 months.

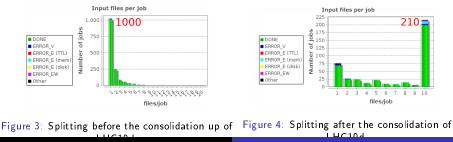
# Dataset consolidation

### Dataset consolidation

- each file is saved at replica different sites
- combination of sites at which a file is saved is called a **basket**
- only files from the same basket can run together in one job (according to the splitting algorithm)
- $\bullet\,$  reduce number of baskets per dataset  $\to\,$  reduce number of jobs to analyze this dataset
- increase input files per job: e. g. mixed event analysis gets more statistics

| file | SE 1 | SE 2 | SE 3 |
|------|------|------|------|
| A    | х    | х    | -    |
| В    | x    | -    | х    |
| С    | -    | х    | х    |
| D    | x    | х    | -    |

### Dataset consolidation


- reduce number of baskets by moving some files to other sites
- while doing this could also unify the number of replicas per basket
- example reason: lost a disk in a SE

| file | SE 1 | SE 2 | SE 3 |  |
|------|------|------|------|--|
| А    | х    | х    | -    |  |
| В    | x    | х    | -    |  |
| С    | x    | х    | -    |  |
| D    | x    | х    | -    |  |

# reduction of jobs

|               |        | moved | jobs     | jobs  |           |           |
|---------------|--------|-------|----------|-------|-----------|-----------|
| dataset       | files  | files | previous | after | splitting | reductior |
| LHC10c_AOD137 | 4695   | -     | 885      | 200   | 10        | 77%       |
| LHC10d_AOD135 | 4205   | -     | 1528     | 418   | 10        | 73%       |
| LHC10h_AOD086 | 27716  | 9693  | 7413     | 4377  | 7         | 41%       |
| LHC11h_AOD115 | 130830 | 1111  | 17893    | 13032 | 5         | 27%       |
| Hijing_LHC10h | 56543  | 2434  | 3963     | 2054  | 20        | 48%       |

#### Table 1: Consolidation of different datasets



Markus Zimmermann Lego Train Optimization 8

#### train status

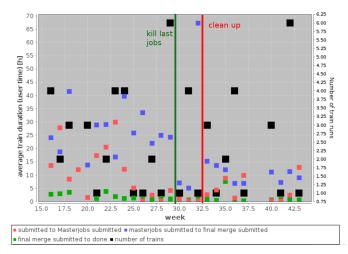



Figure 5: Running time of the datasets LHC10h\_AOD086. Shown are the calendar weeks in 2013.

- some sites are not allowed to be removed (GSI)
- some sites shouldn't be the aim of a copy operation
- take into account the different types of storage elements
- until mid October only very few consolidation operations were successful executed
- ullet executed quite some operations in October o small statistics

- dataset consolidation reduces the number of jobs by the factor
   2 5
- improve the statistics per job for the mixed event analysis
- don't have enough statistics to see significant changes in the running time

# Optimizing splitting parameters

- give the train operators an educated guess about a good ttl and splitting parameter
- try to find a correlation between the test time and the average running time
- automatize the suggestions for the ttl and splitting parameter
- find parameters which describe a good standard test
- adjust test environment so that in most cases a standard test is executed

# Concept

- plot the test and the running time of the train runs for each train separately
- fit the running time dependent on the test time
- for future train runs:

extrapolate the running time on the basis of the fit

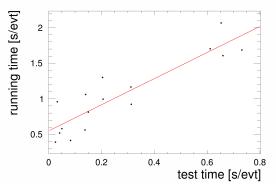



Figure 6: Example of the fitting procedure for train 18 (CF PbPb MC AOD).

For the determination of the fits only certain train runs are used for each train

- with more than 500 test events
- from the last 4 months
- with a test time less than 1 s/evt
- with a running time less than 7 s/evt
- fit only with 5 or more points
- use the train runs which fulfill these requirements to get the fit for each train
- for a new train test use the correspondent fit to extrapolate the running time

# validation

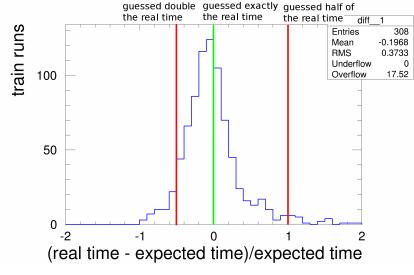



Figure 7: Validate the extrapolation.

# validation

- identical: the training and testing datasets are identical and from a 4 month period
- independent: the training dataset is from a 4 month period while the testing dataset is from a different 1 month period

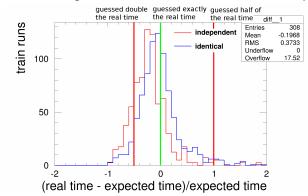



Figure 8: The independent curve is scaled to the train runs of the 4 month dataset.

# summary Optimizing splitting parameters

- found correlation between testing time and average running time
- write automatic script which runs every month and determines the new variables for each train
- put the suggested splitting parameters for the train operators on the train pages

- Improvement suggestions should help the train operators to improve the train setup
- allowing all sites to pick up the last jobs and killing the last jobs reduces the real time of a train
- Dataset consolidation leads to a significant reduction of the number of jobs
- Dataset consolidation improves statistics for analysis like the mixed event
- found correlation between testing time and average running time

- consolidate more datasets and look into the improvements
- put optimizing splitting parameters into production
- develop an automatic update process for the fit values
- nano AODs

# BACKUP

Markus Zimmermann Lego Train Optimization 21

## One Fit for all trains

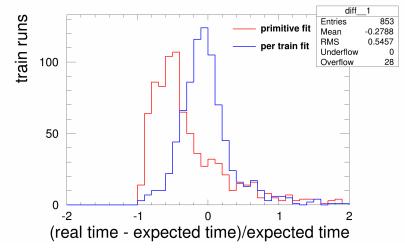



Figure 9: Validation of the primitive assumption that all train runs could be fitted with one fit.