

Run II (Online) Reconstruction and Calibration Strategy for the TPC

Mikolaj Krzewicki Jochen Thäder

Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung

Baseline strategy - online

- Applications of the online calibration for Run2 for PHYSICS runs within the HLT
 - Therefore, also online reconstruction and extensive online monitoring is needed
- Pedestal runs, etc. will be done via DAQ Das
 - They require only RAW data and are not needed immediately in on-line reconstruction
- No new functionality foreseen for the DAQ DAs
- In case the output of DAQ DAs of PHYSICS runs, is needed during the reconstruction → The DAs need to be ported into the HLT
 - Otherwise DAs can stay in the DAQ world
- Online calibration should be able to handle PaC and RoE
 - Our current strategy foresees this, with minimal implications
- HLT TPC cluster compression will be used

Baseline strategy - offline

- The output from the online reconstruction is not intended for immediate use in physics analysis in Run2 → similar to current CPASS0
- Online created calibration objects will be used in offline reconstruction
- Online reconstruction output will be be used as input to offline reconstruction
 - Usage of compressed clusters and/or tracks (pre-seeding)
- An TPC offline reconstruction process has to have the following components:
 - Possibility to join offline calibration pass (<u>CPASSx</u>) until we have understood all implications for Run II, and or in order to refine the calibration (plus <u>QA</u>)
 - Validation pass (<u>VPASS</u>) (plus <u>QA</u>)
 - Physics production pass (<u>PPASS</u>) → AOD filtering (plus <u>QA</u>)

Online calibration baseline

- Online reconstruction is needed to obtain online calibration
- Online calibration is needed for online reconstruction
 - → Feedback Loop
- Extensive online data and calibration monitoring needed during data-taking
 - → Quality Control QC
- Fail-over / Re-running
 - In case of problems during online calibration or re-running of improved algorithms, the same functionality with HLT offline framework can be used to run the calibration offline
 - The current CPASS0/CPASS1 framework will be still in place as well

Remarks

First: General Remarks on the Run II Strategy

Then: The specific remarks on PaC and RoE will be afterwards

Definitions for the Data-Flow (1)

- Ideally data-taking should be Fill based
 - → natural interval for beam dependent parameters
- However, trying to enlarge a Run comes close to it
- Sub-divide Fill/long Run in Calibration Intervals (CIs), which are periods of
 - Stable detector conditions
 - Stable trigger conditions
 - Luminosity intervals

Calibration is bound to a CI !!!

→ The online calibration procedure is bound to the Cls !!!!!

Definitions for the Data-Flow (2)

Implications

- Change of TPC conditions (RoE) can be internally detected within HLT calibration
- Further changing of detector conditions could be "tagged" by ECS → signal needed
- Changing of luminosity conditions could be "tagged" by ECS → signal needed
- However in context of offline tasks:
 - The change of the CI should be always signaled by ECS
 - HLT triggers CI change via a message to ECS

Lets discuss this at the end!

- Add a "flag" to the ESDevent
 - Stable CI number (negative value indicates non-calibrated event)
- On start of a new Cl
 - Increase the CI number
 - Reset calibration and QA

Definitions for the Data-Flow (3)

- Follow the time-dependent calibration parameters in Update Intervals (UIs)
 - Length of an *Update Interval* has to be optimized out of the following parameters
 - (Time-) stability of calibration
 - Number of tracks/clusters needed
 - Updating latency in the on-line system
 - Calibration processing and feedback latency
 - eg.: O(5.000) events needed for TPC

Initial guess 1-2 min

- Detector calibration stable in time during whole Update Interval
- Subdivide Update Interval in 4 steps
 - Sampling Step (Length determined by calibration needs)
 - Continuous update of the calibration over a sliding window of reconstructed tracks and clusters → Length(Sampling) > Length(Use)
 - Process Step (minimize length)
 - Generate the calibration in different processes and merge in final calibration process
 - Feedback Step (minimize length)
 - Use Step (maximize length)

Definitions for the Data-Flow (4)

Schematic Data-Flow (1) Feedback loop

Feedback Loop

- Calibration is stable in 1 UI
- Due to the feedback loop the calibration is improving in the first few UIs
 - After LS1: store those events (as they are flagged and might be off-line reconstructed)
 - After LS2: reject events (or flagged)
- If needed extra update interval (UI -1) before data-taking
 - Up to 1h before data-taking
 - Provide initial estimate for some calibration parameters
 - eg. Laser data-taking for the drift velocity
- Data Quality Control needed to prevent oscillations of the calibration parameters

QA / DQM → QC

Topics

- Monitor time stability of calibration parameters
 - eg.: v_{Drift}, gain, ...
- Monitor time stability of reconstruction performance
 - eg.: TPC-ITS, TPC-TOF, TPC-TRD matching
- Monitor time stability of physics performance
 - eg.: K₀_s, Λ, PID performance
- Fast feedback on complex QA tasks is needed to steer the online calibration/data-taking
- QC needs to check and validate the calibration parameters before they are sent back into the feedback loop
 - Apply similar validation step like now in the current calibration schema before updating the OCDB
 - These validations need to be automated within a framework
- For Run2 we need online QC and offline QA
 - Preferable the classes can be used in both cases
 - Standard interface needed between AnalysisTask ↔ HLTComponent

Schematic Data-Flow (2) Quality Control

DA, QA, DQM ... \rightarrow QC (2)

Parameter Trending

- We need to see the stability of the physics performance during the course of the data-taking (within one LHC fill)
- eg. Position of K_s⁰ peak , dE/dx stability, TPC/ITS, TPC/TRD matching efficiency
- Outer parameters (like pressure) could change and alter the detector calibration output (like the drift-velocity for the TPC), however the physics performance has to stay stable
- Browsable access must be available from ACR and for the world

Trending is successfully used in TPC off-line QA

- Here on run-by-run basis
- ... then on much shorter timescales :O(update interval)

http://www-alice.gsi.de/TPC/PWG1train/data/2012/LHC12h/vpass1/StandardQA/

Handling new running paradigms

- PaC (Pause and Configure)
 - Not an issue for the online/offline system
- RoE (Run over Error)
 - Readout System will remove "junk" part on an equipment (DDL) in case of
 - Fighting TPC chambers
 - Tripping chambers
 - In case of removal: It is flagged in the trailer of the data per equipment
 - This bit has to be propagated into the ESD in order to recover the events from the first UI of the CI

Baseline strategy (1)

- In case of one (or a to be defined number of events within a given time to be studied) event arrives with an Error Flag in the trailer in on equipment
 - → Start a new Calibration Interval (CI)
 - Increase the Calibration Interval counter
 - Remember the 64-bit EventID
 - The reconstruction and calibration is not stopped and just continues, however, the publishing of the sub-calibration objects is stopped ("Feedback" step) (to the merging process is stopped) and the calibration is reset
 - All events from now on are flagged as non-calibrated

Baseline strategy (2)

- Remember: The calibration will run in a sliding window mode
 - sliding window = Update Interval (UI)
- From previous slide: "A to be defined number of events within a given time"
 - If an UI (time length is known) has more then eg. 10% of events with error flag.
- Events are flagged as non-calibrated

Events calibrated Events non-calibrated

Baseline strategy (3)

- If in an UI no more events with an Error Flag are contained
 - → The calibration can be seen as stable again
 - Calibration objects are pushed out again for the reconstruction ("Feedback" step)
 - → This is the normal behavior of the Feedback loop, with the additional condition

Bookkeeping (in the OCDB)

- The change of every CI will be stored in a time-based maps indicating:
 - When (EventID) and which calibration interval (Clnumber)
 - The equipment(s) / chamber sending the Error Flag
- Both above can be filled online
- Add the chamber HV values in the preprocesser after the run to indicate the individual chamber status

Offline processing

Reconstruction

No direct implication, as TPC uses time-based calibration objects

· QA

- Needs to be aware of different CI's as the have to be QA'ed separately
 - → Which can create severe problems (memory, merging, etc...)

Simulation

- The simulation has to be anchored to the Cl's
- The relative distribution of statistics of the different CI's has to be taken into account

Analysis

- Non-calibrated events are flags online (negative Clnumber) and removed by PhysicsSelection
- Analysis should be done CI-wise

Remarks on CI vs Run

- The procedure for the TPC online calibration and reconstruction is now independent of this
- BUT offline QA is not
- For now, we would prefer a on-the-fly change of the "run number"
 - The relevant item is the separate storage of raw data per "run" / CI