

Run III Strategy and Plans

Introduction I

- Goal: go to 50kHz interaction rate in Pb-Pb
- **Current limitations:**
 - MWPG requires Gaung Cine efficient ion blocking (closing time Limits rate to 100us (e--MWPG requires Gating Grid for drift) + 180us : 3.5kHz
 - Further limitation due to electronics: 250 Hz
- Solution:
 - Change detector technology to $GEMs \rightarrow Intrinisic ion blocking$

Introduction II

- Challenge: Minimize IBF space charge in drift region!
- Low ion density in drift region requires
 - low primary ionization n_{ion}
 - low gain G_{eff}
 - low ion backflow IBF

TPC upgrade - SC calibration

Introduction III

- Current assumptions:
 - IBF = 1%
 - Gas gain 2000 (might be lower)
 - ε = gain * IBF = 20 (back drifting ions per incoming electron)
 - Factor 100 better than standard MWPC
- Still leads to sizeable space charge (SC) in the drift volume

Introduction IV

- Expected distortions due to space charge (ε = 20)
- Up to (max) 20cm in radial direction
- Up to (max) 8cm in rφ
- Current requirement → final correction to the intrinsic resolution of 200um

Introduction V

Space charge fluctuations

Requires online estimate of events and event multiplicity

TPC upgrade - SC calibration

Jens Wiechula

TPC upgrade - SC calibration

Huge data volume:

Introduction VI

- 1 zero suppressed Pb-Pb event
 - ~20MByte
 - At 50kHz ~1TByte/s
 - → Not storable
 - \rightarrow plan to suppress by factor 20 online
 - \rightarrow requires online reconstruction

Data Format	Data Compression Factor	Event Size (MByte)
Zero Suppression (FEE)	5-7	20
Remove clusters not associated	2	1.5
to relevant tracks Data format optimization	2-3	< 1

- Two step process:
 - First step for online tracking and compression
 - requires less calibration precision (level of the intrinsic single cluster resolution O(1mm))
 - Obtained with pure online information \rightarrow average SC map
 - Second step
 - Requires matching to external detector
 - Needs final precision
 - Update of SC maps on the level of ~5ms

First step

Goals:

- efficient cluster association to allow data compression
- enable matching to external detectors i.e. ITS, TRD
- 1. ad-hoc correction assuming eta=0.45 for each cluster (minimizing maximal distortions)
- 2. Search seeds (10-15 clusters) in low-distortion region
- 3. Obtain t_0^{seed} from extrapolation to x=y=0, assuming $z_{vtx} = 0$.

Option: match t_0^{seed} to "real" t_0 from list (average spacing 20 µs, but bunch train structure)

First step – matching precision

green: using exact t₀

green: using exact t₀

First step – cluster association efficiency

Not yet final

TPC upgrade - SC calibration

First step – alternative method

Stage 1: alternative method

Scan the list of event $t_{o,i}$ and correct all clusters in a $t_{o,i}$ +100mus window according to a given t_o

- Clusters belonging to the proper event are corrected properly, others not → background in this event
- Distortion correction based on average map, residual distortions (fluctuations) remain (O(mm))

Advantage:

 Straight forward tracking scheme (vertex assumption, no iterative correction update needed)

Disadvantage:

- Clusters are corrected multiple times
- → Requires application of residual distortion to existing full simulation chain including pile-up. Tracking performance will be evaluated for TDR.

TPC upgrade - SC calibration

t_{0.i+1}+100µs

t_{0.i+2}

t_{0.i+1}

TPC drift time

TPC drift time

t_{o,i+2}+100µs

Second step – final calibration

Calibration strategy

Here all implications of feed-back loops enters (see Jochens talk) Most important: good online QA to decide the quality of the data compression

 \rightarrow Worst case: Store all clusters, do tracking 'offline' which would result in a factor 3-4 larger data volume

TPC upgrade - SC calibration

Calibration strategy

SC map requirements

- 1. Reference map
 - assuming "geometric" acceptance
 - updated with known gain and epsilon variation and dead regions from ROC DB
 - from MC
- 2. Average map
 - "long-term" average, updated several times per fill
 - accounts for slow variations: luminosity, p/T, malfunctioning sectors
 - from high-statistics (~1 min) external track sample,
 - extraction of 3D-residual map wrt 1.
- 3. Scaled map
 - same as 2., but scaled by instantaneous "current" (last 160 ms) from collision counter, centrality measure, r and phi-averaged charge or signals in the TPC
 - to be used for first online reconstruction step
- 4. High-resolution map
 - same as 3., but containing r-phi differential current information (from TPC)
 - to be used for final calibration step (if necessary)

Summary

Current assumption:

- Two step reconstruction
 - First step for data compression
 - Calibration updates O(1s- 1min)
 - TPC should be able to match with external detectors
 - Second step for final calibration
 - Calibration update O(5ms)
 - Relies on tracking with external detectors (ITS-TRD)

Alternative method for first step 'brute force'

