Improving the analysis
performance

Andrei Gheata
ALICE offline week
/ Nov 2013

1.

2.
3.

Performance ingredients

Maximize efficiency: CPU/IO

o Useful CPU cycles: deserialization is I/O accounted for as CPU

Minimize fime to complete a given analysis

Maximize throughput

o N /second/core for local data access

events

L Wi

1. CPU/IO

HHHHH

More CPU cycles

Maximize CPU = organized analysis trains

o Atleast one CPU intensive wagon gives others a free ride...

o Many times possible in organized mode (LEGO), not the case for user
distributed analysis

Maximize participation in LEGO

3

2.5

2

1.5

1

0.5

LEGO/USER

2.55

1.43

1.26

08 —
T

Nov.12

Feb.13 May.13

Aug.13

®4

Faster I/O

 Fragmented |/O introduces overheads
o ~N|/O_req*|OTenCy Organized analysis trains
o Killerin case of WAN file access
(see old lessons)

¥ Job efficiency (~20 mio jobs, ~4200 CPU years)

* Tree caching reduces fragmentation

l latency . latency I latency - latency . latency I latency . latency l
TREE CACHING

o Overheads still present for WAN access! Sharing WAN bandwidth does not
scale as good as LAN at all sites.

Maximizing local file
access

By smart file distribution and “basketizing” (splitting)
per job - done
o Locality is a feature by design

o Algorithm fixed now after longstanding splitting issues

o Some local file access may timeout, or jobs intentionally sent to free slofs
with non-local access

Data migration?

o Based on popularity servicese Not terribly useful without a working
forecast service...

o Integrated with the job scheduling system?

By using data prefetching
o Atlow level (ROOT) - “copy during run” —to be tested at large scale
o At workload management level (smart prefetching on proxies) e

056

TFilePrefetch

« Separate thread reading ahead data blocks

Reading thread

Filel l File2

‘ blockl block2 block3 block4

block5 block6é block?7 |

T Processing thread

« First testing round found a bug

o The fix made it to ROOT v5-34-11 (not yet used in production)
o To be tested with LEGO trains soon

* AliAnalysisManager::SetAsyncReading()
o Job reading from CNAF with 70% efficiency becomes 82% !
o Forward file opening not implemented -> non-smooth transitions between files

Speeding-up

deserialization

“The event complexity highly confributes to DS

time..."
o ...forthe same amount of bytes read
o Deserialization itself + ReadFromTree()
o Remains to be measured

Ongoing work: flattening AIAODEvent to 2 levels
o Event + tracks, vertices, cascades, VO's, ...
o TFile::MakeFile, TFile::MakeClass as base for refactoring
o Read event from AOD intfo new structure + write to new file
o Compare reading speeds in the 2 cases

For the future: new “thinned” AOD format serving
80% of analysis

o The train model calls for “general” data -> confradicts with reducing size
o To investigate: SOA for tracks, vertices, VO's, ...

Minimizing time to
complete analysis

ALICE

Improving tails...

Assess acceptable stafistics loss cutting the tail

Jobs in the queue not finding free slots where data is

o Currently the site requirements are being released and jobs land on some free
slot and access (almost) all files remotely -> efficiency price

o One can also play with raising the priority for the tail jobs

Prefetching jobs file lists on data proxies near free slots

o Triggered by low watermark on remaining jobs or high watermark on waiting
time
Change job requirements to match the data proxy
o Better than local job file prefetching because can be done while jobs are
waiting
Just ideas to open the discussion...

o Implementation would require a data transfer service and xrootd-based proxy
caching

o Can bring the efficiency up, but also reduce the time to finish the jobs

10

Possible approaches

S ‘ Is there such thing as “free
Dispatched ’
jobs

trigger
C :)

FLE2E3, SITEA F . Big gun to kill a fly ? (the
Waitin S T o o
- & hEe, SITEE. tail is ~5%). Alfcernatlve. no
[BDS RC @ copy but relaxing

js9 SITED — requirements based on

geographic proximity

F7,F8,F9 e
o o]

ALICE

Throughput/core

HHHHH

Prerequisites

Achieving micro parallelism

o Vectors, instructions pipelining, ILP
o Some performed by HW and compilers, other require explicit intervention

Working on “parallel” data (i.e. vector-like)

o Redesign of data structures AND algorithms

o Data and code locality enforced at framework level, algorithm
optimizations at user level

Make use of coprocessors (GPGPU, Xeon Phi, ...)
o Require parallelism besides vectorization (including at I/O level)

“Decent” CPU usage
o CPU bound tasks

13

Does it worth?

» Nice exercise by Magnus Mager reshaping a three-

prong vertexing analysis

o Re-formatting input data and keeping minimal info, feeding threads from
a circular data buffer, some AVX vectorization, custom histogramming

o 500 MB/s processed from SSD
Analysis threads Reader thread

|||II|III ll||||||| Result

Merging .|I|||I||

. ®14

Micro-parallelism path

Data structures re-engineering: shrink and flatten,
use SOA and alignment technigques runtime

Concurrency in data management: reading,
dispatching to workers

Define work unit: e.g. vector of fracks, provide API
with vector signatfures

Concurrent processing: thread safe user code,
usage of vectorization, kernels

®15

Conclusions

Analysis performance has multiple dimensions, we
are addressing few

Data management policy require improvements to
extra reduce time to analysis completion while
staying efficient

File prefetching expected to bring efficiency up
with extra 10%

A long path in future towards micro-parallelism in
analysis

