
Improving the analysis
performance

Andrei Gheata

ALICE offline week

7 Nov 2013

Performance ingredients
1. Maximize efficiency: CPU/IO

o Useful CPU cycles: deserialization is I/O accounted for as CPU

2. Minimize time to complete a given analysis

3. Maximize throughput
o Nevents/second/core for local data access

2

1. CPU/IO

3

More CPU cycles
• Maximize CPU = organized analysis trains

o At least one CPU intensive wagon gives others a free ride…

o Many times possible in organized mode (LEGO), not the case for user

distributed analysis

• Maximize participation in LEGO

4

0.8

1.43
1.28

2.55

0

0.5

1

1.5

2

2.5

3

Nov.12 Feb.13 May.13 Aug.13

LEGO/USER

Faster I/O
• Fragmented I/O introduces overheads

o ~NI/O_req*latency

o Killer in case of WAN file access

(see old lessons)

• Tree caching reduces fragmentation

o Overheads still present for WAN access! Sharing WAN bandwidth does not

scale as good as LAN at all sites.

5

latency latency latency latency latency latency latency

TREE CACHING latency latency

0
10
20
30
40
50
60
70
80
90

20
12

-F
eb

20
12

-M
ar

20
12

-A
pr

20
12

-M
ay

20
12

-J
un

20
12

-J
ul

20
12

-A
ug

20
12

-S
ep

20
12

-O
ct

20
12

-N
ov

20
12

-D
ec

20
13

-J
an

20
13

-F
eb

20
13

-M
ar

20
13

-A
pr

C
P
U

/W
a
ll

[%
]

Organized analysis trains

Job efficiency (~20 mio jobs, ~4200 CPU years)

Maximizing local file
access

• By smart file distribution and “basketizing” (splitting)

per job - done
o Locality is a feature by design

o Algorithm fixed now after longstanding splitting issues

o Some local file access may timeout, or jobs intentionally sent to free slots

with non-local access

• Data migration?
o Based on popularity services? Not terribly useful without a working

forecast service…

o Integrated with the job scheduling system?

• By using data prefetching
o At low level (ROOT) – “copy during run” – to be tested at large scale

o At workload management level (smart prefetching on proxies)?

6

TFilePrefetch
• Separate thread reading ahead data blocks

• First testing round found a bug
o The fix made it to ROOT v5-34-11 (not yet used in production)

o To be tested with LEGO trains soon

• AliAnalysisManager::SetAsyncReading()
o Job reading from CNAF with 70% efficiency becomes 82% !

o Forward file opening not implemented -> non-smooth transitions between files

7

block1 block2 block3 block4 block5 block6 block7

File1 File2

Reading thread

Processing thread

Speeding-up
deserialization

• “The event complexity highly contributes to DS
time…”
o …for the same amount of bytes read

o Deserialization itself + ReadFromTree()

o Remains to be measured

• Ongoing work: flattening AliAODEvent to 2 levels
o Event + tracks, vertices, cascades, V0’s, …

o TFile::MakeFile, TFile::MakeClass as base for refactoring

o Read event from AOD into new structure + write to new file

o Compare reading speeds in the 2 cases

• For the future: new “thinned” AOD format serving
80% of analysis
o The train model calls for “general” data -> contradicts with reducing size

o To investigate: SOA for tracks, vertices, V0’s, …

8

Minimizing time to
complete analysis

9

Improving tails…
• Assess acceptable statistics loss cutting the tail

• Jobs in the queue not finding free slots where data is
o Currently the site requirements are being released and jobs land on some free

slot and access (almost) all files remotely -> efficiency price

o One can also play with raising the priority for the tail jobs

• Prefetching jobs file lists on data proxies near free slots
o Triggered by low watermark on remaining jobs or high watermark on waiting

time

o Change job requirements to match the data proxy

o Better than local job file prefetching because can be done while jobs are

waiting

• Just ideas to open the discussion…
o Implementation would require a data transfer service and xrootd-based proxy

caching

o Can bring the efficiency up, but also reduce the time to finish the jobs

10

Possible approaches

11

Dispatched
jobs

Waiting
jobs

SITE
A

SE

SITE
B

SE

SITE
C

SE

SITE
D

SE

trigger
F1,F2,F3

F4,F5,F6

F7,F8,F9

Transfer
service

F1,F2,F3, SITE A

F4,F5,F6, SITE B

F7,F8,F9, SITE D

OR C

OR C

OR C

Big gun to kill a fly ? (the
tail is ~5%). Alternative: no
copy but relaxing
requirements based on
geographic proximity

Is there such thing as “free
slots?

Throughput/core

12

Prerequisites
• Achieving micro parallelism

o Vectors, instructions pipelining, ILP

o Some performed by HW and compilers, other require explicit intervention

• Working on “parallel” data (i.e. vector-like)
o Redesign of data structures AND algorithms

o Data and code locality enforced at framework level, algorithm

optimizations at user level

• Make use of coprocessors (GPGPU, Xeon Phi, …)
o Require parallelism besides vectorization (including at I/O level)

• “Decent” CPU usage
o CPU bound tasks

13

Does it worth?
• Nice exercise by Magnus Mager reshaping a three-

prong vertexing analysis
o Re-formatting input data and keeping minimal info, feeding threads from

a circular data buffer, some AVX vectorization, custom histogramming

o 500 MB/s processed from SSD

14

Merging

Reader thread Analysis threads

Circular
buffer

Result

Micro-parallelism path
• Data structures re-engineering: shrink and flatten,

use SOA and alignment techniques runtime

• Concurrency in data management: reading,

dispatching to workers

• Define work unit: e.g. vector of tracks, provide API

with vector signatures

• Concurrent processing: thread safe user code,

usage of vectorization, kernels

15

Conclusions
• Analysis performance has multiple dimensions, we

are addressing few

• Data management policy require improvements to

extra reduce time to analysis completion while

staying efficient

• File prefetching expected to bring efficiency up

with extra 10%

• A long path in future towards micro-parallelism in

analysis

16

