
Concurrent Data Processing
Frameworks
ALICE Offline Week - November 8, 2013
P. Mato/CERN

Friday, November 8, 13

HEP Software Frameworks
✤ HEP Experiments develop Software Frameworks

✤ General Architecture of the Event processing applications
✤ To achieve coherency and to facilitate software re-use
✤ Hide technical details to the end-user Physicists (providers of the Algorithms)

✤ Applications are developed by customizing the Framework
✤ By composition of elemental Algorithms to form complete applications
✤ Using third-party

components wherever
possible and configuring
them

2

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

Algorithm Algorithm

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services Histogram

Service
Persistency

Service
Data
Files

Transient
Histogram

Store

Application
Manager Converter Converter Event

Selector

Transient
Event
Store

•Example the Gaudi Framework
used by ATLAS and LHCb
among others

Friday, November 8, 13

Algorithms and Data Flows
✤ The meat of the applications is

coded by physicists in terms of
Algorithms
✤ They transform raw input event data

into processed data
✤ e.g. from digits -> hits -> tracks ->

jets -> etc
✤ Algorithms solely interact with the

Event Data Store (“whiteboard”) to
get input data and put the results
✤ Agnostic to the actual “producer” and

“consumer” of the data
✤ Complete data-flows are programmed

by the integrator of the application
(e.g. Reconstruction, Trigger, etc.)

3

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1 Data T1

Data T5

Real dataflow

Apparent dataflow

Friday, November 8, 13

CPU Technology Trends
✤ For the last ~20 years we have had an easy

life in HEP software and computing
✤ Year after year up to 2x increase in computing

capacity tanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

✤ The same program that in year 1995 was needing
10 seconds, would need 1 second in 2002

✤ The “easy life” is now over
✤ The available transistors are used for

adding new CPU cores while keeping the
clock frequency basically constant thus limiting the power consumption

✤ We need to introduce concurrency into applications to fully exploit
the continuing exponential CPU throughput gains
✤ Efficiency and performance optimization will become more important

4

© 2009 Herb Sutter

Friday, November 8, 13

http://www.gotw.ca/copyright.htm
http://www.gotw.ca/copyright.htm

Why Concurrency?
✤ We need to adapt current data processing applications to the new

many-core architectures (~100 cores)
✤ No major change is expected in the overall throughput with respect to trivial

one-job-per-core parallelism with today core counts
✤ We must reduce the required resources per core to avoid real barriers

when scaling to ~100 cores
✤ I/O bandwidth
✤ Memory requirements
✤ Connections to DB, open files, etc.

✤ Reduce latency for single jobs (e.g. trigger, user analysis)
✤ Run a given job in less time making use of all available cores

✤ Make possible the use of coprocessors
✤ Lumping data from several events together

5

Friday, November 8, 13

Concurrency at What Level?
✤ Concrete HEP algorithms can be parallelized with some effort

✤ Making use of bare threads, OpenMP, MPI, OpenCL, Cuda, etc.
✤ But difficult to integrate them in a complete application
✤ Much more beneficial performance-wise to concentrate on the parallelization

of the full application, not only on some parts (Amdahl’s law)
✤ Developing and validating parallel code is very difficult

✤ Very technical, difficult to validate and debug
✤ ‘Physicists’ should be saved from this
✤ Concurrency will impose some limitations on the way Algorithms are coded

✤ At the Framework level you have the full overview and control of the
application
✤ Controlling the access to critical shared states and resources
✤ The framework may decide to run some parts of the code sequentially

6

Friday, November 8, 13

Concurrent ‘Algorithm’ processing
✤ Ability to schedule modules/algorithms concurrently

✤ Full data dependency analysis would be required (no global data or hidden
dependencies)
✤ DAGs (Directed Acyclic Graphs)

✤ Conditional execution of
algorithms or sequences thereof

✤ Need to resolve the data-flow
and control-flow dependencies
automatically and dynamically
✤ Run everything in parallel that isn’t constrained by control flow or data flow

✤ Unfortunately with today’s existing Algorithms we cannot use
efficiently ~100 cores
✤ Estimated concurrency factor rather low for CMS and LHCb

(between 3 and 6)
7

Time

Input Processing Output

Friday, November 8, 13

Example: LHCb Reconstruction

✤ DAG of Brunel (214 Algorithms)
✤ Obtained by instrumenting the existing

sequential code
✤ Probably still missing ‘hidden or

indirect’ dependencies

✤ This can give us an estimate of the
potential for ‘concurrency’
✤ Assuming no changes in current

reconstruction algorithms

8

Friday, November 8, 13

Many ‘Concurrent’ Events
✤ Need to deal with the tails of sequential processing

✤ There is always an Algorithm that takes very long (e.g. 20% in reconstruction)
that produces data (e.g. fitted tracks) that are needed by many other

✤ Introducing pipeline processing
✤ Exclusive access to resources

or non-reentrant algorithms
can be pipelined
e.g. file reading/writing, DB access, etc.

✤ Current frameworks handle a
single event at the time. They
need to be evolved
✤ Design a powerful and

flexible algorithm scheduler
✤ Need to define the concept of

an event context

9

Time

Friday, November 8, 13

Prototype Project: GaudiHive
✤ Provide refurbished Gaudi framework which

✤ Allows concurrent execution of algorithms
✤ Supports simultaneous processing of multiple events
✤ Requires minimal change of user code

✤ Phase 1
✤ New framework components with sufficient functionality to support a small

‘slice’ of the LHCb reconstruction application (mini-Brunel)
✤ Minimize everything that has an impact on current users of Gaudi
✤ ~20 algorithms and associated tools (raw decoding and Velo tracking)

✤ Ideal for understanding ‘threading issues’ and validating results
✤ Phase 2

✤ Extern to the complete reconstruction (~200 algorithms)
✤ Add remaining set of components and functionality
✤ Document the “how-to migration”

10

Friday, November 8, 13

How? Initiatives taken so far
✤ A new forum was established at the start of this year, the Concurrency

Forum, with the aim of :
✤ sharing knowledge amongst the whole community
✤ forming a consensus on the best concurrent programming models and on

technology choices
✤ developing and adopting common solutions

✤ The forum meets bi-weekly and there has been an active and growing
participation involving many different laboratories and experiment
collaborations

✤ A programme of work was started to build a number of demonstrators for
exercising different capabilities, with clear deliverables and goals
✤ 16 projects are in progress started by different groups in all corners of the

community
✤ In the longer term this may need to evolve into other means for measuring

progress and steering the future work programme

11http://concurrency.web.cern.ch
Friday, November 8, 13

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

TBB Technology
✤ Intel® Threading Building Blocks (TBB) has been identified as a good

match for implementing concurrency at the Framework level
✤ C++ library with a rich and complete approach to express parallelism

✤ Concurrent containers: concurrent_vector, concurrent_hash_map, ...
✤ Algorithms: parallel_for, pipeline, task, ...
✤ Other: atomic data types, memory allocators, ...

✤ Provides a “task-based” programming model that abstracts platform
details and threading mechanisms for scalability and performance

✤ Positive evaluations reported at the Concurrency Forum
✤ Easy to build and very portable
✤ Lower CPU overhead than other libraries evaluated
✤ Missing functionalities are generally easy to add

12
http://concurrency.web.cern.ch

Friday, November 8, 13

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

Prototype: GaudiHive
✤ So far a ‘toy’ Framework implemented using TBB

✤ No real algorithms but CPU crunchers
✤ Timing and data dependencies from real workflows

✤ Schedule an Algorithm when its inputs are available
✤ Need to declare Algorithms’ inputs
✤ The tbb::task is the pair (Algorithm*, EventContext*)

✤ Multiple events managed simultaneously
✤ Bigger probability to schedule an Algorithm
✤ Whiteboard integrated in the Data Store
✤ Which has been made thread safe

✤ Several copies of the same algorithm can coexist
✤ Running on different events
✤ Responsibility of AlgoPool to manage the copies

✤ Some services have been made thread-safe
✤ E.g. TBBMessageService

13

Whiteboard
(TES)

Algorithm

Event NEvent NEvent NExecutioExecutioExecution
Context

Algorithm
Algorithm

Scheduler

Algorithm Pooltbb::task'

EventLoopMgr

Friday, November 8, 13

Components Overview
✤ New components added to Gaudi to support concurrency

✤ E.g. Scheduler, Whiteboard, AlgorithmPool
✤ Existing components upgraded

✤ E.g. ToolSvc, EventLoopMgr
✤ Adopted forward scheduling

✤ Schedule an algorithm
as soon as its input
data are available

✤ Other other scheduling
strategies available as
a plug-in

14

Whiteboard (TES)

Algorithm

Event NEvent NEvent SlotsExecutionExecutionExecution
Context

Algorithm
Algorithm

AlgSchedulertbb::task'

EventLoopMgr

AlgorithmPool

AlgorithmAlgorithmAlgorithm
(idle)

Friday, November 8, 13

The Forward Scheduler
✤ Keeps the state of each algorithm for

each event
✤ Simple finite state machine
✤ Receives new events from loop manager
✤ Interrogates whiteboard for new

DataObjects
✤ Pulls algorithms from AlgorithmPool if

they are available
✤ Encapsulate them in a tbb::task for

execution

15

Inital

ControlReady

DataReady

Scheduled

Executed

Control flow
conditions

Required input
data available

Task submitted
to TBB Runtime

Task completed

Friday, November 8, 13

Algorithm Pool
✤ Contains algorithms and coordinates them
✤ Gives away instances to run, retrieves

finished algorithms
✤ Clones algorithms (via AlgManager)
✤ Number depends on code re-entrancy:

 non re-entrant (1 copy only)
 non re-entrant (use n copies)
 fully re-entrant (re-use same instance n times)

✤ Allows for exclusive resource checking
e.g. if 2 algos using a non re-entrant external library, only one at the
time can run.

✤ Algorithms’ and resources’ thread-safety can be tackled one by one

16

Friday, November 8, 13

Service Threads
✤ An additional “service” thread (outside the TBB pool, which contains

“worker” threads) is spawned:
✤ Host the scheduler method to update the state machine when an algorithm has run. If

no work is available, it sleeps.
✤ The “main” thread manages the event loop (“little more than an event

factory”)
✤ While the scheduler processes the events, it sleeps.

✤ Other service threads existed and continue to exist (e.g. conditions watchdogs)

17

TBB Thread Pool!

EventLoopMgr Scheduler

New
event

Finished
event

Asynchronous
exchange of
events

New algorithm
task

State machine
update closure

Asynchronous exchange of
tasks and update closures

“Main”
Thread

Service
Thread

Friday, November 8, 13

User Code Changes: Executive Summary

✤ Algorithm dependencies
✤ Data dependencies: announced by the algorithms themselves

✤ Global data structures
✤ A few objects served as back-door communication channels

bypassing the official (event data) channel
✤ Fix assumptions of only one event at a time

✤ Meaning of many global incidents radically changed (e.g. BeginEvent)
✤ Raw Data Conversion Caches and their cleanup

18

Friday, November 8, 13

Output Validation
✤ Only successfully tested software is working software
✤ Our test case: LHCb standard set of data quality monitoring histograms
✤ Necessary but not sufficient to guarantee production quality results
✤ Check histograms for serial and concurrent version (high number of

simultaneous events and algorithms)

19

Example of data
monitoring histogram:
ADC counts.

All standard histograms identical bin by bin
Friday, November 8, 13

Does it help with memory consumption?

✤ Running mode:
✤ 1 clone per event in flight of 3 longest running algorithms
✤ Full TBB thread pool (24 threads)
✤ Limit algorithms in flight to 6

✤ Resident Set Size at the end of the event loop (no finalisation):
✤ Serial Gaudi (no new components) …..! 478 MB
✤ Concurrent Gaudi 1 evt in flight ……...! 480 MB
✤ Concurrent Gaudi 2 evts in flight ……. ! 485 MB
✤ Concurrent Gaudi 10 evts in flight …...! 514 MB
✤ Note: Not full LHCb events but MiniBrunel events.

20

6 algorithms
running

simultaneously

Memory: multi-threaded solution is cheap!

Friday, November 8, 13

Scaling on One Processor

21

Multiple events in flight!
Clone 3 most time consuming
algs (1 copy per event in flight)

Linear scaling of speedup
up to number of physical cores

10 events in flight already
enough for peak performance
(thanks to HT)

Friday, November 8, 13

What’s Next
✤ Initial development of a concurrent framework prototype

✤ Smooth evolution for the Gaudi framework
✤ Supporting concurrency at all levels (intra-algorithms, algorithms, events)
✤ Minimal changes to ‘user’ code

✤ Outcome of real-world test very successful
✤ Sequential and Concurrent Mini-Brunel yield identical physics output
✤ Concurrent MiniBrunel scales linearly on a single die
✤ Negligible increase of memory consumption

✤ Future activities
✤ Extend the test scenario to a bigger LHCb example (full reconstruction)
✤ ATLAS is caching up with Mini-Reco
✤ Complete the set of thread-safe classes and implementation patterns
✤ Develop compete benchmarks

22

Friday, November 8, 13

Other Data Processing
Frameworks (presented at CHEP)

Friday, November 8, 13

GaudiHive
✤ Refurbished Gaudi framework for

concurrency
✤ Supporting concurrency at all levels

✤ Finished all developments necessary for
the test case
✤ Framework: components for MT execution

(Scheduler, EventLoopManager) and
integration with TBB runtime

✤ “User” code: input declaration, thread-
safety fixes, compatibility with >1 event
simultaneously processed

✤ Outcome very successful
✤ Serial and concurrent Mini-Brunel yield

identical physics output
✤ Concurrent Mini-Brunel scales linearly on a

single die
✤ Negligible increase of memory consumption

24

M. Clemencic, B. Hegner,
D. Piparo, P. Mato

Friday, November 8, 13

CMS Threaded Framework
✤ Better scaling of system resources as core

count increases
✤ memory, I/O buffers, files, ...

✤ Minimize changes to existing framework
and user facing interfaces

✤ The design allows many different levels of
concurrency
✤ Events, modules and sub-module
✤ TBB based

✤ Thread-safety
✤ Thread-unsafe code is allowed via ‘One’

module variety
✤ Framework guarantees serialization

✤ Need tools to find thread-safety issues
✤ Clang static analyzer, Helgrind

25

E. Sexton-Kennedy, C. Jones

Friday, November 8, 13

FairROOT data streaming
✤ Introduced pipelined data processing

to the current FairROOT Framework
✤ Multithreaded concept or a message

queue based one?
✤ Message based systems to decouple

producers from consumers
✤ Work spread over several processes and

machines
✤ ZeroMQ provides efficient transport

options
✤ No need to re-invent the wheel

✤ The Framework delivers some
components which can be connected
to each other in order to construct a
processing pipeline(s).

26

M. Al-Turany et al.

Friday, November 8, 13

Geant4 MT
✤ Adaptations to thread-safety for

event-level parallelism
✤ Capitalizing the work started back in

2009
✤ Final release version 10 expected for

December 6th
✤ Showing good efficiency w.r.t.

excellent linearity vs. number of
threads (~95%)
✤ From 1.1 to 1.5 extra gain factor in

HT-mode on HT-capable hardware
✤ No measured CPU degradation vs.

sequential runs

27

G. Cosmo et al.

Friday, November 8, 13

Geant V Prototype
✤ Simulation is the ideal primary

target for investigation for its
relative experiment independence
and its importance in the use of
computing resources
✤ Scheduling the transport of ‘baskets’ of

particles
✤ The Geant Vector project aims at

demonstrating substantial speedup
(3-5+) on modern architectures

✤ The work is done in close
collaboration with the stakeholders
and with Geant4

28

F. Carminati et al.

Friday, November 8, 13

Scheduling Particle Transport with TBB
✤ Replacing ‘particle basket’

scheduler in Geant V prototype
with TBB

✤ Results
✤ Performance and behavior of the

new prototype is close to the old
prototype scheduler

✤ There are some features that need
to be further understood
✤ unexpected increase of cache

misses
✤ comparatively low scalability

29

E. Ovcharenko et al.

Friday, November 8, 13

Concluding Remarks
✤ Multi-job and multi-process solutions processing one event at the time give us

good service and will continue for a long while
✤ Hungry on resources (memory, open files, DB connections, etc.)
✤ File merging problem

✤ We need to start embracing the next generation applications with finer-grain
concurrency
✤ Reduces memory and number of required resources
✤ Pre-requisite for offloading to heterogenous resources

✤ In parallel we need to ‘vectorize’ our libraries and algorithms to make efficient
use of SIMD instructions available in modern processors

✤ Most of the scientific software and algorithms was designed for sequential
processor in use for many decades and will require significant re-engineering

✤ The community needs to develop expertise in concurrent programming
✤ Sharing experiences, successes and failures is essential this early exploratory phase
✤ The Concurrency Forum tries to address these needs

30

Friday, November 8, 13

