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HEP Software Frameworks
✤ HEP Experiments develop Software Frameworks

✤ General Architecture of the Event processing applications
✤ To achieve coherency  and to facilitate software re-use
✤ Hide technical details to the end-user Physicists (providers of the Algorithms)

✤ Applications are developed by customizing the Framework
✤ By composition of elemental Algorithms to form complete applications
✤ Using third-party 

components wherever 
possible and configuring
them
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Algorithms and Data Flows
✤ The meat of the applications is 

coded by physicists in terms of 
Algorithms
✤ They transform raw input event data  

into processed data
✤ e.g. from digits -> hits -> tracks -> 

jets -> etc
✤ Algorithms solely interact with the 

Event Data Store (“whiteboard”) to 
get input data and put the results
✤ Agnostic to the actual “producer” and 

“consumer” of the data
✤ Complete data-flows are programmed 

by the integrator of the application 
(e.g. Reconstruction, Trigger, etc.)  
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CPU Technology Trends
✤ For the last ~20 years we have had an easy

life in HEP software and computing
✤ Year after year up to 2x increase in computing

capacity tanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

✤ The same program that in year 1995 was needing
10 seconds, would need 1 second in 2002 

✤ The “easy life”  is now over
✤ The available transistors are used for 

adding new CPU cores while keeping the 
clock frequency basically constant thus limiting the power consumption  

✤ We need to introduce concurrency into applications to fully exploit 
the continuing exponential CPU throughput gains
✤ Efficiency and performance optimization will become more important
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Why Concurrency?
✤ We need to adapt current data processing applications to the new 

many-core architectures (~100 cores)
✤ No major change is expected in the overall throughput with respect to trivial 

one-job-per-core parallelism with today core counts
✤ We must reduce the required resources per core to avoid real barriers 

when scaling to ~100 cores
✤ I/O bandwidth
✤ Memory requirements
✤ Connections to DB, open files, etc.

✤ Reduce latency for single jobs (e.g. trigger, user analysis)
✤ Run a given job in less time making use of all available cores

✤ Make possible the use of coprocessors
✤ Lumping data from several events together
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Concurrency at What Level?
✤ Concrete HEP algorithms can be parallelized with some effort

✤ Making use of bare threads, OpenMP, MPI, OpenCL, Cuda, etc.
✤ But difficult to integrate them in a complete application
✤ Much more beneficial performance-wise to concentrate on the parallelization 

of the full application,  not only on some parts  (Amdahl’s law)
✤ Developing and validating parallel code is very difficult

✤ Very technical, difficult to validate and debug
✤ ‘Physicists’ should be saved from this
✤ Concurrency will impose some limitations on the way Algorithms are coded  

✤ At the Framework level you have the full overview and control of the 
application
✤ Controlling the access to critical shared states and resources
✤ The framework may decide to run some parts of the code sequentially
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Concurrent ‘Algorithm’ processing
✤ Ability to schedule modules/algorithms concurrently

✤ Full data dependency analysis would be required (no global data or hidden 
dependencies) 
✤ DAGs (Directed Acyclic Graphs)

✤ Conditional execution of 
algorithms or sequences thereof 

✤ Need to resolve the data-flow
and control-flow dependencies
automatically and dynamically
✤ Run everything in parallel that isn’t constrained by control flow or data flow

✤ Unfortunately with today’s existing Algorithms we cannot use 
efficiently ~100 cores
✤ Estimated concurrency factor rather low for CMS and LHCb

(between 3 and 6)
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Example: LHCb Reconstruction

✤ DAG of Brunel (214 Algorithms)
✤ Obtained by instrumenting the existing 

sequential code
✤ Probably still missing ‘hidden or 

indirect’ dependencies

✤ This can give us an estimate of the 
potential for ‘concurrency’
✤ Assuming no changes in current 

reconstruction algorithms
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Many ‘Concurrent’ Events
✤ Need to deal with the tails of sequential processing

✤ There is always an Algorithm that takes very long (e.g. 20% in reconstruction) 
that produces data (e.g. fitted tracks) that are needed by many other

✤ Introducing pipeline processing
✤ Exclusive access to resources

or non-reentrant algorithms
can be pipelined
e.g. file reading/writing, DB access, etc.

✤ Current frameworks handle a 
single event at the time. They 
need to be evolved
✤ Design a powerful and 

flexible algorithm scheduler
✤ Need to define the concept of

an event context
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Prototype Project: GaudiHive
✤ Provide refurbished Gaudi framework which

✤ Allows concurrent execution of algorithms
✤ Supports simultaneous processing of multiple events
✤ Requires minimal change of user code

✤ Phase 1
✤ New framework components with sufficient functionality to support a small 

‘slice’ of the LHCb reconstruction application (mini-Brunel)
✤ Minimize everything that has an impact on current users of Gaudi
✤ ~20 algorithms and associated tools (raw decoding and Velo tracking)

✤ Ideal for understanding ‘threading issues’ and validating results
✤ Phase 2

✤ Extern to the complete reconstruction (~200 algorithms)
✤ Add remaining set of components and functionality
✤ Document the “how-to migration”
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How? Initiatives taken so far
✤ A new forum was established at the start of this year, the Concurrency 

Forum, with the aim of :
✤ sharing knowledge amongst the whole community
✤ forming a consensus on the best concurrent programming models and on 

technology choices
✤ developing and adopting common solutions 

✤ The forum meets bi-weekly and there has been an active and growing 
participation involving many different laboratories and experiment 
collaborations

✤ A programme of work was started to build a number of demonstrators  for 
exercising different capabilities, with clear deliverables and goals
✤ 16 projects are in progress started by different groups in all corners of the 

community
✤ In the longer term this may need to evolve into other means for measuring 

progress and steering the future work programme
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TBB Technology
✤ Intel® Threading Building Blocks (TBB) has been identified as a good 

match for implementing concurrency at the Framework level
✤ C++ library with a rich and complete approach to express parallelism

✤ Concurrent containers:  concurrent_vector, concurrent_hash_map, ...
✤ Algorithms: parallel_for, pipeline, task, ...
✤ Other: atomic data types, memory allocators, ...

✤ Provides a “task-based” programming  model that abstracts platform 
details and threading mechanisms for scalability and performance

✤ Positive evaluations reported at the Concurrency Forum
✤ Easy to build and very portable 
✤ Lower CPU overhead than other libraries evaluated
✤ Missing functionalities are generally easy to add
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Prototype: GaudiHive
✤ So far a ‘toy’ Framework implemented using TBB

✤ No real algorithms but CPU crunchers
✤ Timing and data dependencies from real workflows

✤ Schedule an Algorithm when its inputs are available
✤ Need to declare Algorithms’ inputs
✤ The tbb::task is the pair (Algorithm*, EventContext*)

✤ Multiple events managed simultaneously
✤ Bigger probability to schedule an Algorithm
✤ Whiteboard integrated in the Data Store
✤ Which has been made thread safe

✤ Several copies of the same algorithm can coexist
✤ Running on different events
✤ Responsibility of AlgoPool to manage the copies

✤ Some services have been made thread-safe
✤ E.g. TBBMessageService
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Components Overview
✤ New components added to Gaudi to support concurrency

✤ E.g. Scheduler, Whiteboard, AlgorithmPool
✤ Existing components upgraded

✤ E.g. ToolSvc, EventLoopMgr
✤ Adopted forward scheduling

✤ Schedule an algorithm 
as soon as its input 
data are available

✤ Other other scheduling
strategies available as
a plug-in 
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The Forward Scheduler
✤ Keeps the state of each algorithm for 

each event
✤ Simple finite state machine
✤ Receives new events from loop manager
✤ Interrogates whiteboard for new 

DataObjects
✤ Pulls algorithms from AlgorithmPool if 

they are available
✤ Encapsulate them in a tbb::task for 

execution
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Algorithm Pool
✤ Contains algorithms and coordinates them
✤ Gives away instances to run, retrieves 

finished algorithms
✤ Clones algorithms (via AlgManager)
✤ Number depends on code re-entrancy:

 non re-entrant (1 copy only) 
 non re-entrant (use n copies)
 fully re-entrant (re-use same instance n times)

✤ Allows for exclusive resource checking 
e.g. if 2 algos using a non re-entrant external library, only one at the 
time can run.

✤ Algorithms’ and resources’ thread-safety can be tackled one by one

16

Friday, November 8, 13



Service Threads
✤ An additional “service” thread (outside the TBB pool, which contains 

“worker” threads) is spawned:
✤  Host the scheduler method to update the state machine when an algorithm has run. If 

no work is available, it sleeps.
✤ The “main” thread manages the event loop (“little more than an event 

factory”)
✤ While the scheduler processes the events, it sleeps.

✤ Other service threads existed and continue to exist (e.g. conditions watchdogs)
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User Code Changes: Executive Summary

✤ Algorithm dependencies
✤ Data dependencies: announced by the algorithms themselves

✤ Global data structures
✤ A few objects served as back-door communication channels

bypassing the official (event data) channel
✤ Fix assumptions of only one event at a time

✤ Meaning of many global incidents radically changed (e.g. BeginEvent)
✤ Raw Data Conversion Caches and their cleanup
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Output Validation
✤ Only successfully tested software is working software
✤ Our test case: LHCb standard set of data quality monitoring histograms
✤ Necessary but not sufficient to guarantee production quality results
✤ Check histograms for serial and concurrent version (high number of 

simultaneous events and algorithms)
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Does it help with memory consumption?

✤ Running mode:
✤ 1 clone per event in flight of 3 longest running algorithms
✤ Full TBB thread pool (24 threads)
✤ Limit algorithms in flight to 6

✤ Resident Set Size at the end of the event loop (no finalisation):
✤ Serial Gaudi (no new components) …..! 478 MB
✤ Concurrent Gaudi 1 evt in flight ……...! 480 MB
✤ Concurrent Gaudi 2 evts in flight ……. ! 485 MB
✤ Concurrent Gaudi 10 evts in flight …...! 514 MB 
✤ Note: Not full LHCb events but MiniBrunel events.
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Scaling on One Processor
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What’s Next
✤ Initial development of a concurrent framework prototype

✤ Smooth evolution for the Gaudi framework 
✤ Supporting concurrency at all levels (intra-algorithms, algorithms, events)
✤ Minimal changes to ‘user’ code

✤ Outcome of real-world test very successful
✤ Sequential and Concurrent Mini-Brunel yield identical physics output
✤ Concurrent MiniBrunel scales linearly on a single die 
✤ Negligible increase of memory consumption 

✤ Future activities
✤ Extend the test scenario to a bigger LHCb example (full reconstruction)
✤ ATLAS is caching up with Mini-Reco
✤ Complete the set of thread-safe classes and implementation patterns
✤ Develop compete benchmarks
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Other Data Processing 
Frameworks (presented at CHEP)
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GaudiHive
✤ Refurbished Gaudi framework for 

concurrency
✤ Supporting concurrency at all levels

✤ Finished all developments necessary for 
the test case
✤ Framework: components for MT execution 

(Scheduler, EventLoopManager) and 
integration with TBB runtime

✤ “User” code: input declaration, thread-
safety fixes, compatibility with >1 event 
simultaneously processed

✤ Outcome very successful
✤ Serial and concurrent Mini-Brunel yield 

identical physics output
✤ Concurrent Mini-Brunel scales linearly on a 

single die
✤ Negligible increase of memory consumption
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CMS Threaded Framework
✤ Better scaling of system resources as core 

count increases
✤ memory, I/O buffers, files, ...

✤ Minimize changes to existing framework 
and user facing interfaces

✤ The design allows many different levels of 
concurrency
✤ Events, modules and sub-module
✤ TBB based

✤ Thread-safety
✤ Thread-unsafe code is allowed via ‘One’ 

module variety
✤ Framework guarantees serialization

✤ Need tools to find thread-safety issues
✤ Clang static analyzer, Helgrind
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FairROOT data streaming
✤ Introduced pipelined data processing 

to the current FairROOT Framework
✤ Multithreaded concept or a message 

queue based one?
✤ Message based systems to decouple 

producers from consumers
✤ Work spread over several processes and 

machines
✤ ZeroMQ provides efficient transport 

options
✤ No need to re-invent the wheel

✤ The Framework delivers some 
components which can be connected 
to each other in order to construct a 
processing pipeline(s).
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Geant4 MT
✤ Adaptations to thread-safety for 

event-level parallelism
✤ Capitalizing the work started back in 

2009
✤ Final release version 10 expected for 

December 6th
✤ Showing good efficiency w.r.t. 

excellent linearity vs. number of 
threads (~95%)
✤ From 1.1 to 1.5 extra gain factor in 

HT-mode on HT-capable hardware
✤ No measured CPU degradation vs. 

sequential runs
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Geant V Prototype
✤ Simulation is the ideal primary 

target for investigation for its 
relative experiment independence 
and its importance in the use of 
computing resources
✤ Scheduling the transport of ‘baskets’ of 

particles
✤ The Geant Vector project aims at 

demonstrating substantial speedup 
(3-5+) on modern architectures

✤ The work is done in close 
collaboration with the stakeholders 
and with Geant4
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Scheduling Particle Transport with TBB
✤ Replacing ‘particle basket’ 

scheduler in Geant V prototype 
with TBB

✤ Results
✤ Performance and behavior of the 

new prototype is close to the old 
prototype scheduler

✤ There are some features that need 
to be further understood
✤  unexpected increase of cache 

misses
✤ comparatively low scalability
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Concluding Remarks
✤ Multi-job and multi-process solutions processing one event at the time give us 

good service and will continue for a long while
✤ Hungry on resources (memory, open files, DB connections, etc.)
✤ File merging problem

✤ We need to start embracing the next generation applications with finer-grain 
concurrency  
✤ Reduces memory and number of required resources
✤ Pre-requisite for offloading to heterogenous resources

✤ In parallel we need to ‘vectorize’ our libraries and algorithms to make efficient 
use of SIMD instructions available in modern processors 

✤ Most of the scientific software and algorithms was designed for sequential 
processor in use for many decades and will require significant re-engineering

✤ The community needs to develop expertise in concurrent programming
✤ Sharing experiences, successes and failures is essential this early exploratory phase
✤ The Concurrency Forum tries to address these needs
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