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Theory 

• Maxwell's 2 magneto-static equations; 

With no currents or steel present: 

• Solutions in two dimensions with scalar potential (no currents); 

• Cylindrical harmonic in two dimensions (trigonometric formulation); 

• Field lines and potential for dipole, quadrupole, sextupole; 

Introduction of steel: 

• Ideal pole shapes for dipole, quad and sextupole; 

• Field harmonics-symmetry constraints and significance; 

• Significance and use of contours of constant vector potential; 
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Three dimensional issues: 

• Termination of magnet ends and pole sides; 

• The ‘Rogowski roll-off’ 

Introduction of currents: 

• Ampere-turns in dipole, quad and sextupole; 

• Coil design; 

• Coil economic optimisation-capital/running costs; 

Practical Issues: 

• Backleg and coil geometry- 'C', 'H' and 'window frame' designs; 

• FEA techniques - Modern codes- OPERA 2D and 3D; 

• Judgement of magnet suitability in design. 

             Contents (cont.) 
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Magnets - introduction 
Dipoles to bend the beam: 

Quadrupoles to focus it: 

Sextupoles to correct 

chromaticity: 

We shall establish a formal 

approach to describing 

these magnets. 
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Maxwell’s equations: .B = 0 ; 

                H = j ; 

Then we can put:  B = -  

 

So that:   2 = 0       (Laplace's equation). 

Taking the two dimensional case (ie constant in the z 
direction) and solving for cylindrical coordinates (r,): 

 

 = (E+F )(G+H ln r) + n=1
 (Jn r n cos n +Kn r n sin n 

 +Ln r -n cos n  + Mn r -n sin n  ) 

           No currents, no steel: 
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The scalar potential simplifies to: 

 = n (Jn r n cos n +Kn r n sin n), 

with n integral and   Jn,Kn  a function of geometry. 

Giving components of flux density: 

 

 Br = - n (n Jn r n-1 cos n +nKn r  n-1 sin n) 

 B = - n (-n Jn r  n-1 sin n +nKn r n-1 cos n)  

             In practical situations: 

Then to convert to Cartesian coordinates: 

  x = r cos ;   y = r sin ; 

and    Bx = - / x;  By = - / y 
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 This  is  an  infinite  series  of  cylindrical  harmonics;  

they  define  the  allowed  d istributions  of  B   in  2 

d imensions  in  the  absence  of  currents  within  the  

domain  of  (r,). 

 Distributions  not  given  by  above  are  not  physically  

realisable. 

 Coefficients  Jn, Kn are determined   by  geometry (remote 

iron boundaries  and   current  sources). 

 Note that this formulation can be expressed  in terms of 

complex fields and  potentials. 

        Significance 
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 Cylindrical:   Cartesian: 

   =J1 r cos  +K1 r sin .    =J1 x +K1 y 

 Br = J1 cos  + K1 sin ;  Bx = -J1 

 B = -J1 sin  + K1 os ;  By = -K1 

So,  J1 = 0  gives vertical dipole field: 

K1 =0  gives  
horizontal  
dipole  field. 

B

 =  c o n s t .

Dipole field  n=1: 
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Cylindrical:       Cartesian: 

  =  J2 r 2 cos 2 +K2 r 2 sin 2;     = J2 (x
2 - y2)+2K2 xy 

Br = 2 J2 r  cos 2 +2K2 r  sin 2;    Bx = -2 (J2 x +K2 y) 

B = -2J2 r  sin 2 +2K2 r  cos 2;    By = -2 (-J2 y +K2 x) 

J2 = 0 gives 'normal' or 
‘upright’ quadrupole 
field. 

K2 = 0  gives  'skew'  
quad  fields (above  
rotated  by  /4).  

Lines of flux 
density 

Line of constant 

scalar potential 

Quadrupole field  n=2: 
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Cylindrical;    Cartesian: 

  =  J3 r
3 cos 3 +K3 r

3 sin 3;  = J3 (x
3-3y2x)+K3(3yx2-y3) 

Br = 3 J3r
2  cos 3 +3K3r

2  sin 3; Bx = -3J3 (x
2-y2)+2K3yx 

B= -3J3 r
2  sin 3+3K3 r

2 cos 3; By = -3-2 J3 xy +K3(x
2-y2) 

Line of constant 
scalar potential 

Lines of flux 
density 

+C 

-C 

+C 

-C 

+C 

-C 
J3 = 0 giving ‘upright‘ 
sextupole field. +C 

-C 

+C 

-C 

+C 

-C 

Sextupole field  n=3: 
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Variation of By on x axis (upright fields). 

0

100

-20 0 20

By 

x 

Sextupole: 

quadratic variation: 

 

By = GS x2; 

GS is sextupole gradient 

(T/m2). 

 

  

x 

By 

Dipole; 

constant field : 

 

x 

By 

By = GQ x; 

GQ is quadrupole gradient 

(T/m). 

Quadrupole; 

linear field  
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B (x) =  B  
k n  x

n

n !n  0





magnet strengths are specified by the value of kn;  
(normalised to the beam rigidity); 
 

order n of k is different to the 'standard' notation: 
 

   dipole is   n = 0; 
   quad is   n = 1;  etc. 
k has units: 
   k0 (dipole)   m-1; 
   k1 (quadrupole) m-2;  etc.  

Alternative notation: 
(used  in most lattice programs) 
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What is the ideal pole shape? 

• Flux is normal to a ferromagnetic surface with infinite : 

• Flux is normal to lines of scalar potential, (B = - ); 

• So the lines of scalar potential are the ideal pole 

shapes! 

(but these are infinitely long!) 

curl H = 0 

therefore  H.ds = 0; 

in steel H = 0; 

therefore parallel H air = 0 

therefore B is normal to surface. 

   

  1 

      Introducing iron yokes and poles. 
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 Equations for Ideal (infinite) poles; 

 (Jn = 0) for ‘upright’ (ie not skew) fields: 

 Dipole: 

  y=   g/ 2; 

 (g is inter-pole gap). 

 Quadrupole: 

  xy= R2/ 2;       

 Sextupole: 

  3x2y - y3 = R3;   

R 

Equations of ideal poles 

R is the ‘inscribed radius’ of a multipole magnet. 
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‘Pole-tip’ Field  

The radial field at pole centre of a multipole magnet: 

   BPT = GN R(n-1) ; 

Quadrupole: BPT = GQ R; sextupole: BPT = GS R
2; etc; 

Has it any significance? 

- a quadrupole R = 50 mm; GQ = 20 T/ m; BPT = 1.0 T; 

 

i)  Beam line –  round beam r = 40 mm; 

pole extends to x = 65 mm; By(65,0) = 1.3 T;   OK   ; 

ii) Synchrotron source –  beam ± 50 mm horiz.; ± 10 mm vertical; 

pole extends to x = 80 mm; By (80,0)= 1.6 T;  perhaps OK ??? ; 

iii)  FFAG –  beam ± 65 mm horiz.; ± 8 mm vertical; 

Pole extends to x = 105 mm; By (105, 0) = 2.1 T  .  
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'Combined  Function Magnets' - often d ipole and  

quadrupole field  combined  (but see later slide): 

 

A quadrupole magnet with  

physical centre shifted  from  

magnetic centre. 

 

Characterised  by 'field  index' n, 

+ve or -ve depending 

on d irection of gradient; 

do not confuse with harmonic n! 

B

n = -



0

  

  

  

  

  

  

  

  

 B

 x

  

  

  
  

  

  

  
  

 ,

w h e re   is  th e  ra d iu s  o f  c u rv a tu re  o f  th e  b e a m  a n d  B
0

 is  th e  c e n tra l  d ip o le  f ie ld .

I f  p h y s ic a l  a n d  m a g n e tic  c e n tre s  a re  s e p a ra te d  b y  X
0

T h e n B
0


 B

x

  

  

    

  

  

    
X

0
;

th e re fo re                                     X
0

=   / n ;

in  a  q u a d ru p o le x' y   R
2

/ 2

w h e re  x '  is  m e a su re d  f ro m  th e  tru e  q u a d  c e n tre ;

P u t                                              x ' =  x +   X
0

S o  p o le  e q u a t io n  is                      y = 
R

2

2

n


1 

n x



  

  

  
  

  

  

  
  

-  1

o r y   g 1 
n x



  

  

  
  

  

  

  
  

-  1

 w h e re  g  is  th e  h a lf  g a p  a t  th e  p h y s ic a l  c e n tre  o f  th e  m a g n e t

 is rad ius of curvature of the 

beam; 

Bo is central d ipole field   

         Combined  function magnets 
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Typical combined  

d ipole/ quadrupole 

  

SRS Booster c.f. dipole 

‘F’ type -ve n 

‘D’ type +ve n. 

  

Room Temperature Magnets          Neil Marks CAS Prague 2014 

NINA Combined function magnets 
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Pole for a combined dipole and quad. 

1

x 

 B
 

0
B

x
 - 1 g            y                                                  as rewritten

magnet the of centre physical the at  the is g where

1
x n

 - 1 g      y                                                                      or

1
x n

 - 1 
n

 
2

2
R

      y                                                  is equation Pole

0
X  x  ' x                                                                       As

2 / 
2

R    yx'                                                             therefore

0
X 

 x 

 B
  

0
       B                                                            Then

 x'       is centre quad true from tdisplacmen Horizontal

   0
X        byseparated are centres magnetic and Physical







































































































gap half
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• dipole, quadrupole and  sextupole; 

• dipole & sextupole (for chromaticity control); 

• dipole, skew quad, sextupole, octupole;   

Generated  by 

• pole shapes given by sum of correct scalar potentials     

       - amplitudes built into pole geometry –  not variable! 

OR:  

• multiple coils mounted  on the yoke  

       - amplitudes independently varied  by coil currents. 

Other combined function magnets: 
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The SRS multipole magnet. 

  

Could  develop: 

• vertical d ipole 

• horizontal d ipole; 

• upright quad; 

• skew quad; 

• sextupole; 

• octupole; 

• others. 
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 Practically,  poles  are  finite,  introducing  errors;  

 these appear as higher harmonics which degrade the 

field  d istribution. 

 However,  the  iron  geometries  have  certain  

symmetries  that  restrict  the  nature  of  these  errors. 

Dipole: Quadrupole: 

The practical pole in 2D 
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Lines  of  symmetry: 

    Dipole:   Quad 

Pole  orientation   y = 0;    x = 0;  y = 0 

determines whether pole 

is upright or skew. 

 

Additional symmetry  x = 0;  y =  x  

imposed  by pole edges. 

 

The additional constraints imposed   by  the  symmetrical  

pole  edges  limits  the  values  of  n  that  have  non  zero  

coefficients  

         

     

Possible symmetries. 
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+ 

- 

Type       Symmetry               Constraint 

Pole orientation () = -(-)  all  Jn = 0;   

Pole edges  () = ( -)  Kn non-zero  

      only  for: 

      n = 1, 3, 5, etc; 

So, for a fully symmetric d ipole, only 6, 10, 14 etc pole 

errors can be present. 

+ + 

Dipole symmetries 
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Type     Symmetry           Constraint 

Pole orientation   () = -( -)           All  Jn = 0; 

     () = -( -)        Kn = 0 all odd  n;  

Pole edges  () =  (/ 2 -)     Kn non-zero  

              only  for: 

              n = 2, 6, 10, etc; 

So, a fully symmetric quadrupole, only 12, 20, 28 etc 

pole errors can be present. 

Quadrupole symmetries 
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Type     Symmetry           Constraint 

Pole orientation () = -( -)  All  Jn = 0; 

   () = -(2/ 3 - ) Kn = 0  for all n 

   () = -(4/ 3 - )  not multiples of 3; 

Pole edges   () = (/ 3 - ) Kn non-zero only  

      for: n = 3, 9, 15, etc.  

So, a fully symmetric sextupole, only 18, 30, 42 etc pole 

errors can be present. 

Sextupole symmetries. 
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Summary 
For perfectly symmetric magnets, the ‘allowed’ error fields are fully 

defined  by the symmetry of scalar potential  and  the trigonometry:

           

Dipole: only dipole, sextupole, 

10 pole etc can be present  

Quadrupole: only quadrupole, 12 

pole,   20 pole etc can be present 
Sextupole: only sextupole, 18, 30, 42 

pole, etc. can be present  

+  +  

-  

+  

+  

-  

-  

Dipole: Quadrupole:  
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We have:  B = curl A  (A is vector potential); 

and    div A = 0 

Expanding:  B = curl A =  

(Az/  y - Ay/  z) i + (Ax/  z - Az/  x) j + (Ay/  x - Ax/  y) k; 

where   i, j, k, are unit vectors in x, y, z. 

In 2 dimensions Bz = 0;   /  z = 0; 

So    Ax = Ay = 0; 

and    B = (Az/  y ) i  - (Az/  x) j 

A is in the z direction, normal to the 2 D problem. 

Note:         div B = 2Az/ (x y) - 2Az/ (x y)  =  0;  

Vector potential in 2 D 
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 In a two dimensional problem the magnetic flux  between 

two points is proportional to the d ifference between the 

vector potentials at those points. 

B 

F 

A1 A2 

F  (A2 - A1) 

Proof on next slide. 

Total flux between two points  DA 
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 Consider a rectangular  closed   path,  length l  in z 

d irection at (x1,y1) and  (x2,y2); apply Stokes’ theorem: 

x 

y 
z 

(x1, y1) (x2, y2) 

l 

B 
A 

ds 

dS F =   B.dS  =   ( curl A).dS  =   A.ds 

But A  is  exclusively  in  the  z  

d irection,  and   is  constant  in this  

d irection. 

So: 

 A.ds = l { A(x1,y1) - A(x2,y2)}; 

F = l { A(x1,y1) - A(x2,y2)}; 

Proof: 
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Therefore: 

 

i) Contours of constant vector potential in 2D give a graphical 

representation of lines of flux. 

 

ii) These are used  in 2D FEA analysis to obtain a graphical image of 

flux d istribution. 

 

iii) The total flux cutting the coil allows the calculation of  the inductive 

voltage per turn in an ac magnet: 

   V = - d  F/dt; 

iv) For a sine wave oscillation frequency w: 

   Vpeak = w (F/2) 

 

Contours of constant A 
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Fringe flux will be present at pole ends 

so beam deflection continues beyond  

magnet end : 

z 

0

1.2

0

By 

The magnet’s strength is given by    By (z) dz  along the 
magnet , the integration including the fringe field at each end; 

The ‘magnetic length’ is defined as              (1/B0)( By (z) dz )          
over the same integration path, where B0 is the field at the azimuthal 
centre. 

B0 

In 3D –  pole ends (also pole sides). 
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At high(ish) fields it is necessary to terminate the pole 
(transverse OR longitudinal) in a controlled way:; 
•to prevent saturation in a sharp corner (see diagram); 
•to maintain length constant with x, y; 
•to define the length (strength) or preserve quality; 
•to prevent flux entering normal 
 to lamination (ac).  

  

Longitudinally, the end of the 
magnet is therefore 
'chamfered' to give increasing gap 
(or inscribed radius) and lower 
fields as the end is approached.  

 

End Fields and  Geometry. 
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   Classical end  or side solution 
 The 'Rogowski' roll-off:  Equation: 

y = g/2 +(g/a) [exp (ax/g)-1]; 

g/2 is dipole half gap; 

y = 0 is centre line of gap; 

a ( ̴ 1);  parameter to control 

the roll off; 

 
With a = 1, this profile 
provides the maximum rate 
of increase in gap with a 
monotonic decrease in flux 
density at the surface; 

For a high By magnet this avoids any 

additional induced non-linearity 

a = 1.5 

 

a = 1.25 

 

a = 1.0 
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Now for   j   0     H = j ;    

To expand, use Stoke’s Theorum: 
for  any vector  V  and a  closed 
curve s : 
 V.ds = curl V.dS 
 
Apply  this  to:      curl H = j ; 

d S

d s

V

then  in a  magnetic  circuit: 
 

     H.ds = N I; 

 

N I  (Ampere-turns) is  total  current cutting   S  

Introduction of currents 
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g

l

1

N I/ 2

N I/ 2

B  is  approx  constant  round the 
loop  made  up  of  l  and  g, (but  see  
below); 
 
But  in  iron,  >>1, 
and     Hiron = Hair / ; 

So 
  Bair = 0 NI / (g + l/); 

g,  and  l/ are  the  'reluctance'  of  the  gap  and  iron.  

Approximation  ignoring  iron  reluctance (l/ << g ): 
 
    NI = B g /0 

Excitation current in a d ipole 
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For  quadrupoles  and  sextupoles,  the required  
excitation  can be  calculated  by  considering  fields  and  
gap  at  large  x. For example:                 Quadrupole: 

y

x B

Pole  equation:        xy = R2 /2 
On x axes           BY = GQx; 
where  GQ  is gradient  (T/m). 
 

At  large  x (to  give  vertical  
lines  of  B): 
         N I = (GQx) ( R2 /2x)/0 

 
      N I = GQ R2 /2 0 (per pole). 

The same method for a  

              Sextupole,   

( coefficient  GS,),   gives: 

 

  N I = GS R
3/ 30  (per pole) 

Excitation current in quad & sextupole 
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In air (remote currents! ),        B = 0 H    

    B = -      

Integrating over a limited  path  

(not circular) in air:  N I = (1 –  2)/ o 

1, 2 are the scalar potentials at two points in air. 

Define  = 0 at magnet centre; 

then potential at the pole is: 

    o NI 

 

Apply the general equations for magnetic 

field  harmonic order n for non-skew 

magnets (all Jn = 0) giving:  

   N I = (1/ n) (1/ 0) Br/ R (n-1) R n 

Where: 

 NI is excitation per pole; 

  R is the inscribed  rad ius (or half gap in a d ipole); 

 term in brackets  is magnet grad ient GN  in T/ m (n-1).  

y

x B = 0 

 = 0 NI 

General solution-magnets order n  
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Standard   design  is 

rectangular copper (or  

aluminium) conductor, with  

cooling  water tube. Insulation  

is  glass cloth and  epoxy  resin. 

 

Amp-turns (NI)  are 

determined ,  but  total copper  

area  (Acopper)  and   number  of  

turns  (N)  are two degrees of 

freedom and need   to  be  

decided . 

Current  density: 

j = NI/ Acopper  

Optimum  j  

determined   from  

economic  criteria.  

Coil geometry 
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  Advantages of low j: 
• lower power loss –  power bill is decreased; 

• lower power loss –  power converter size is decreased; 

• less heat d issipated  into magnet tunnel. 
 

Advantages of high j: 
• smaller coils; 

• lower capital cost; 

• smaller magnets. 
 

Chosen value of j is an 

optimisation of magnet  

capital against power costs. 

 

0.0

15.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Current density j

L
if

e
ti

m
e
 c

o
st

running 

capital 

total 

Current density - optimisation 
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  The  value  of  number of turns (N) is chosen to match 

power supply and interconnection  impedances. 

Factors  determining  choice  of  N: 

   Large N (low  current)   Small N (high  current)  

Small, neat  terminals.   Large, bulky terminals  

Thin interconnections-hence low  Thick, expensive connections. 

cost and  flexible. 

More  insulation layers in coil,  High  percentage  of  copper  in  

hence  larger coil  volume and   coil  volume. More  efficient use 

increased  assembly  costs.   of  space  available  

High  voltage  power supply  High  current  power supply. 

-safety  problems.    -greater losses. 

Number of turns per coil-N 
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  From the Diamond 3 GeV synchrotron source: 
Dipole: 

   N  (per magnet): 40; 

   I max   1500 A; 

   Volts  (circuit): 500 V. 

Quadrupole: 

   N (per pole)  54; 

   I max   200 A; 

   Volts (per magnet): 25 V. 

Sextupole: 

   N (per pole)  48; 

   I max   100 A; 

   Volts (per magnet) 25 V. 

Examples-turns & current 



29/07/2014 

22 

  

Room Temperature Magnets          Neil Marks CAS Prague 2014 

Dipoles can be ‘C core’ ‘H core’ or ‘Window frame’ 

''C' Core: 

Advantages: 

   Easy access; 

   Classic design; 

Disadvantages: 

   Pole shims needed; 

  Asymmetric (small); 

  Less rigid ; S h im

d e ta il
The ‘shim’ is a small, add itional piece of ferro -magnetic material 

added  on each side of the two poles –  it compensates for the 

finite cut-off of the pole, and  is optimised  to reduce the 6, 10, 

14...... pole error harmonics. 

Magnet geometry 
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Flux in the yoke  includes the gap flux and  stray flux, 

which extends (approx) one gap width on either side of 

the gap. 

 

g

g

b
Thus, to calculate total flux 

in the back-leg of magnet 

length l: 

 

          F =Bgap (b + 2g) l. 

 

Width of backleg is chosen 

to limit Byoke and  hence 

maintain high  . 

Flux in the gap. 
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Steel- B/ H curves 

-for typical silicon steel laminations 

 

Note: 

•  the relative permeability is the 

gradient of these curves; 

• the lower gradient close to the 

origin - lower permeability; 

• the permeability is maximum at 

between 0.4 and  0.6 T. 
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Cross section 

of the 

Diamond 

storage ring 

d ipole. 

Typical ‘C’ cored  Dipole 
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‘H core’: 

Advantages: 

 Symmetric; 

 More rigid ; 

Disadvantages: 

 Still needs shims; 

 Access  problems. 

''Window Frame' 

Advantages: 

     High quality field ; 

     No pole shim; 

     Symmetric & rigid ; 

Disadvantages: 

     Major access problems; 

     Insulation thickness  

H core and window-frame magnets 
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 Provid ing the conductor is continuous to the steel ‘window 

frame’ surfaces (impossible because coil must be electrically 

insulated), and  the steel has infinite , this magnet generates 

perfect d ipole field . 

Provid ing current density J is 

uniform in conductor: 

•  H is uniform and vertical up 

outer face of conductor; 

•  H is uniform, vertical and  

with same value in the middle 

of the gap; 

•   perfect d ipole field . 

J 

H 

Window frame dipole 
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 Insulation added to coil: 

B increases 

close to coil 

insulation 

surface 

B decrease 

close to coil 

insulation 

surface 

best 

compromise 

Practical window frame d ipole. 
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  ‘Diamond’ storage ring 

quadrupole. 

The yoke support 

pieces in the horizontal 

plane need  to provide 

space for beam-lines 

and  are not ferro-

magnetic. 

Error harmonics 

include n = 4 (octupole) 

a finite permeability 

error. 

Open-sided  Quadrupole 
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To  compensate  for  the  non-infinite  pole, shims are added 

at the pole edges. The area and  shape of  the shims determine 

the amplitude of error harmonics which will be present. 

A

A

Dipole: Quadrupole: 

The designer optimises the 

pole by ‘predicting’ the field  

resulting from a given pole 

geometry and  then adjusting 

it to give the required  

quality. 

When high fields are present, 

chamfer angles must be small, 

and  tapering of poles may be  

necessary  

Typical pole designs 
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As the gap is increased, the size (area) of the shim is 
increased, to give some control of the field quality at the 
lower field. This is far from perfect! 

Transverse adjustment at end of 
dipole 

Transverse adjustment at end of 
quadrupole 

Pole-end  correction.  
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A first assessment can be made by just examining By(x) 

within the required  ‘good field’ region. 

Note that the expansion of By(x) y = 0  is a Taylor series:  

   By(x)  = n =1
 


 {bn x (n-1)} 

    = b1 + b2x + b3x
2 + … … …  

     d ipole  quad         sextupole 

Also note: 

     By(x) /  x = b2 + 2 b3x
 + … … .. 

So quad gradient  G     b2 =  By(x) /  x  in a quad  

But sext. gradient  Gs   b3  = ½ 2 By(x) /  x2 in a sext. 

So coefficients are not equal to d ifferentials for n = 3 etc. 

Assessing pole design 
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A simple judgement of field  quality is given by plotting: 

 

• Dipole:  {By (x) - By (0)}/ BY (0)     (DB(x)/ B(0)) 

• Quad:   dBy (x)/ dx   (Dg(x)/ g(0)) 

• 6poles:  d 2By(x)/ dx2   (Dg2(x)/ g2(0)) 

‘Typical’ acceptable variation inside ‘good field’ region: 

 

  DB(x)/ B(0)   0.01% 

  Dg(x)/ g(0)   0.1% 

  Dg2(x)/ g2(0)   1.0% 

Is it ‘fit for purpose’? 
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Computer codes are now used; eg the Vector 

Fields codes -‘OPERA 2D’ and 3D. 

These have: 

• finite elements with variable triangular mesh; 

• multiple iterations to simulate steel non -linearity; 

• extensive pre and  post processors; 

• compatibility with many platforms and  P.C. o.s. 

Technique is iterative: 

• calculate flux generated  by a defined  geometry; 

• adjust the geometry until required  d istribution is 

achieved . 

Design computer codes. 
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Pre-processor: 

The model is set-up in 2D using a GUI (graphics 

user’s interface) to define ‘regions’: 

• steel regions; 

• coils (including current density); 

• a ‘background’ region which defines the physical 

extent of the model; 

• the symmetry constraints on the boundaries; 

• the permeability for the steel (or use the pre-

programmed curve); 

• mesh is generated  and  data saved . 

Design Procedures – OPERA 2D 
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Model of Diamond storage ring dipole 
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With mesh added  
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Pole profile, showing shim and Rogowski side roll-off 

for Diamond 1.4 T d ipole.: 

Close-up of pole region. 
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Note –  one eighth 

of 

Quadrupole could  

be used  with 

opposite symmetries 

defined  on 

horizontal and  y = x 

axis.  
But I have often 

experienced  

d iscontinuities at the 

origin with such1/ 8 
th geometry. 

Diamond quadrupole: a 

simplified  model 
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FEA model in longitudinal plane, with correct end 
geometry (including coil), but 'idealised' return yoke: 

+

-

This will establish the end distribution; a numerical integration will give the 
'B' length. 

Provided dBY/dz is not too large, single 'slices' in the transverse plane can be 
used to calculated the radial distribution as the gap increases. Again, 
numerical integration will give  B.dl as a function of x. 

This technique is less satisfactory with a quadrupole, but end effects are less 
critical with a quad. 

Calculation of end  effects using 2D codes 
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Data Processor: 

either: 

 

• linear - which uses a predefined  constant permeability 

for a single calculation,  or 

 

• non-linear - which is iterative with steel permeability 

set according to B in steel calculated  on previous 

iteration. 

Calculation. 
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Post-processor: 

uses pre-processor model for many options for 

d isplaying field  amplitude and quality: 

• field  lines; 

• graphs; 

• contours; 

• gradients; 

• harmonics (from a Fourier analysis around a pre-

defined  circle). 

 

Data Display –  OPERA 

2D 
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Diamond s.r. d ipole: DB/ B = {By(x)- B(0,0)}/ B(0,0);  

typically  1:104 within the ‘good  field  region’ of -12mm  x  +12 mm.. 

 

2 D Dipole field  homogeneity on x axis 
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2 D Flux density d istribution in a d ipole 
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   Transverse 

(x,y) plane in 

Diamond s.r. 

dipole; 

contours are 

0.01% 

required  

good  field  

region: 

2 D Dipole field  homogeneity in gap  
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The amplitude and phase of the integrated  

harmonic components in a magnet provide an 

assessment: 

• when accelerator physicists are calculating beam 

behaviour in a lattice; 

• when designs are judged for suitability; 

• when the manufactured  magnet is measured; 

• to judge acceptability of a manufactured  magnet. 

 

Measurement of a magnet after manufacture will be 

d iscussed  in the section on measurements. 

 

Harmonics indicate magnet quality 
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Simpler geometries can be used  in some cases. 

The Diamond d ipoles have a Rogawski roll-off at the ends 

(as well as Rogawski roll-offs at each side of the pole). 

 

See photographs to follow. 

 

This give small negative sextupole field  in the ends which 

will be compensated  by adjustments of the strengths in 

ad jacent sextupole magnets –  this is possible because each 

sextupole will have its own individual power supply. 

End geometries - d ipole 
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OPERA 3D model of Diamond dipole. 
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Diamond d ipole poles 
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-0 .1

-0 .0 5

0

0 .0 5

0 .1

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6

x  (mm)

D
 d

H
y

/d
x

 (
%

)

y =  0 y =  4  mm y =  8  mm y =  1 2  mm y =  1 6  mm

Diamond 

WM 

quadrupole: 

graph is 

percentage 

variation in 

dBy/dx vs x 

at different 

values of y. 

Gradient 

quality is to 

be  0.1 % or 

better to x = 

36 mm. 

2 D Assessment of quadrupole gradient quality  
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Tosca 

results -

d ifferent 

depths 45 

end  

chamfers 

on Dg/ g0 

integrated  

through 

magnet 

and  end  

fringe field  

(0.4 m long 

WM 

quad). 

5 10 15 20 25 30 35

X

-0.002

-0.001

0.001

0.002

Fractional

deviation

No Cut

4 mm Cut

8 mm Cut

6 mm Cut

7 mm Cut

Thanks to Chris Bailey (DLS) who performed this working using OPERA 3D. 

End chamfering - Diamond ‘W’ quad  
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Diamond 

quadrupoles 

have an 

angular cut at 

the end; 

depth and  

angle were 

ad justed  

using 3D 

codes to give 

optimum 

integrated  

gradient. 

Simplified  end  geometries - quadrupole 
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It is not 

usually 

necessary 

to chamfer 

sextupole 

ends (in a 

d .c. 

magnet). 

Diamond 

sextupole 

end: 

Sextupole ends 
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‘Artistic’ Diamond Sextupoles 

  


