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collider

- at high energy to probe smaller scales or to
produce heavier particles
« lighter particles were studied in older machines
- “to boldly go where no man has gone before”
+ some events only possible at higher energies
- collider as last stage of the accelerator chain .
+ e.g. at CERN: Linac+tPSB+PS+SPS+LHC

100 200 300 400 500 600 700 800 900 1000
M. (GeV]

- particle colliders use two beams
- higher available energy by colliding two beams E, = \/(E, +E2)2 -(p, +132)2
(-p1 = pp, Eq = E; = E+my)
+ than using a fixed target (p,=0, E,=m,)
- see W. Herr, “Relativity”
- need many interactions to explore and prove rare events
» luminosity measures the number of events for the experiments

- figures of merit of a collider: energy E_,, and luminosity L
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e.g.: the Large Hadron Collider

- main example in this lecture

- choice of beam particle:
- for a discovery machine, need hadrons
- use proton-proton to have many events

- same particles to counter-rotate: need two rings
»  2-in-1 magnet design

« LHC layout

\ DUMP + 8 arcs and 8 straight sections (SS)
+ 4 SS for machine equipment

« 4 SS for experiments

— T + Alice, ATLAS, CMS, LHCb

CLEANING CLEANING + common vacuum chamber in 4
\ interaction points only

+ note: also single ring colliders exist

+ e.g. SppS, LEP, Tevatron

E.n = 14 TeV

L=10%cm3s"’
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diversion: a CMS slice

or “what the experiments do with the collisions”

Key:

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
""" Photon

Silicon
Tracker

Electromagnetic
)| ]' Calorimeter
:

Hadron Superconducting
Calorimeter Solenoid

CERW, Februaary 2005

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS.

D Bamey,

...but that is another story and shall be told another time
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outline

- (motivation)

+ luminosity
« definition and derivation from machine parameters
« head-on and offset collisions
+ reduction factors

- crossing angles and crab cavities, hourglass
« lifetime, contributions

+ luminosity scans and luminosity levelling
- integrated luminosity and ideal run time
- measurements and optimizations

« vdM scans, high beta runs
- linear colliders

- no fixed target
« no coasting beams

CAS in Prague 2014 giulia.papotti@cern.ch 6

25/8/14



definition: cross section

- process: a particle encounters a target
« e.g. another beam

- the encounter produces a certain final
state composed of various particles
(with a certain probability)

« Cross-section o, expresses the likelihood of the process
Oevent FEPresents the “area” over which the process occurs
+ units: [m?]
+ in nuclear and high energy physics: 1 barn (1 b = 10-2* cm?)
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L: definition

« luminosity L relates cross-section o and event

R= dN - L rate R = dN/dt at time t :
- - (t)oeven; - quantifies performance (“brilliance”) of collider
df - relativistic invariant and independent of physical
reaction

- accelerator operation aims at maximizing the
_ total number of events N for the experiments
N=o0,,, [L(t)d

* Ogyent IS fixed by Nature
aim at maximizing JL(t)dt

« units : [m?2s"]
« [Ldtis frequen;ly expressed in pb' =103 cm2 or
cm-

fb1 = 10%
LHC
- e.g.: from LHC run 1, ATLAS+CMS got 1400 N=5
Higgs events in total 5 =05fb=10% cm?

event

+ in~30fb" each: 6.1 fb''in 2011, 23.3 fb-' in 2012

JL(t) dt = 10 fb-"

CAS in Prague 2014 giulia.papotti@cern.ch 8

25/8/14



circular colliders

Machine Years in Beam type Beam energy Luminosity

operation [GeV] [cm2 s1]
ISR 1971-'84 pp 31 >2x1031
LEP | 1989-'95 et e- 45 3x1080
LEP Il 1995-2000 ete- 90-104 1032
KEKB 1999-2010 et e- 8x35 2x1034
SppS 1981-'84 p anti-p 270 6x1030
TEVATRON 1983-2011 p anti-p 980 2x1032
LHC 2008-? pp 7000 1034
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L from machine parameters -1-
« intuitively: more L if there are more protons and more tightly packed
Lo« N/N,Q |
N2po(X,Y,8,80)

Nip1(X.,8,-S0)

So

LeNNK [ p,(6,y,5,-5,)0,(x,3,5,5,) dx dy ds ds,
X,Y,8,8)

« K =2 c: kinematic factor (see W. Herr, “Relativity”)

« N, N,: bunch population

+ - density distribution of the particles (normalized to 1)
- X,y: transverse coordinates

« s: longitudinal coordinate

+  sq: “time variable”, sp = c t

- Qroverlap integral
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L from machine parameters -2-

- for a circular machine can reuse the beams f times per second (storage ring)
- for k colliding bunch pairs per beam
- for uncorrelated densities in all planes: ~ P(x,Y,s,1) = p (x)p,(y)p,(s = vt)

L=2fkN,N, f plx('x)ply(y)pls(S_SO)pZX('x)pZy(y)pZX(s-l-sO)dxddedSO

X,Y,8,5
. 1 u-u,)
- for Gaussian bunches: p, )= exp _4 u=x,y
oN2m 20,
- for equal beams in x or y: Gy = Oy, Gy = Opy LHC
can derive a closed expression: L = —1-2- N;,N, =1.15 10" ppb
4700, f = 11.25 kHz
f: revolution frequency
k: number of colliding bunch pairs at that Interaction Point (IP) Oys Oy =16.6 um
N;, N,: bunch population o
o, transverse beam size at the collision point L=1.210%cm?s
CAS in Prague 2014 giulia.papotti@cern.ch 11

need for small p*

- expand physical beam size o, ,;  0,=0, = |—
* means “at the IP” 14

try and conserve low ¢ from injectors
explicit dependence on energy (y)
« intensity pays more than ¢ and p*
design low p* insertions
- limits by triplet aperture, protection by collimators
in LHC nominal cycle: “squeeze”

LHC
p*=18>0.55m

e =3.75um
y = 7463
O,y = 16.6 um

Relative beam sizes around IP1 (Atlas) in collision
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reduction factors (F)

transverse offsets
crossing angles and crab cavities
hourglass effect
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transverse offsets

+ in case the beams do not overlap in the transverse plane (e.g. in x)

= UG Gpa,. f\wox
/
g
kN,N A AY
- more generally L= I—Zf.ex = y2 F
4no.0, 40. 4o
7 Ax F
— 10%° 0 1
N = 10 0.779
£ o
z & & 20 0.368
=% Z 36 0.105
£ g 40 0018
5o 10
5 [) 5 0 5 0 5 10 55 0.002
offset [0] offset [o]
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transverse offsets -2-

- more general expression including different beam sizes:
* O # Opy, Oy # Oyy

kNN, f (Ax)? Ay’

L= 2 2 2 O T2 2" 2 2
2n\/(ox,, +0,,)(0,,+0,,) 2(0,+0,) 20,,+0,,)
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crossing angles -1-

- to avoid parasitic collisions when W\
there are many bunches \ /’
otherwise collisions elsewhere than in
interaction point only ‘ ’
+ e.g.: CMS experiment is 21 m long,
common vacuum pipe is 120 m long . ¢
- luminosity is reduced as the particles &P ?SN‘
no longer traverse the entire length of S2s
the counter-rotating bunch n
NN 1
2
40,0, o\ F LHC
1+] —tan* ¢ = 285 urad
O 2 o,=7.5¢cm
i1an% is called the Piwinski angle valid for small ¢ and 6>>0,,0, F=0.84
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crossing angles -2-

- for very small p*, need big crossing angle: big reduction in L
« e.g. for LHC upgrade (HL-LHC): p* = 15 cm, ¢ = 590 urad, F ~ 0.35
- “crab crossing” scheme being considered

«*™ ey
(= -
L
& D
~ ~~
& «

- use fast RF cavities for bunch rotation (transverse deflection)
- used at KEKB, but with leptons and “global” scheme
- at LHC, need “local’ scheme due to collimators, need compact cavities
- feasibility to be demonstrated, studies on-going
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hourglass effect ¥

@

*.
==
W
o
&
39
3

- B depends on longitudinal position s . s 2 E
see B. Holzer, chapter on Insertions in /J’(s) =f|1+|—= ]\ /
“Transverse Beam Dynamics” Ji} 22\ /
g
%5 \O/ 05

distance from IP [m]

+ then lbe*am size o, depen_ds ons ;¢ e
« if B* >> o, effect is negligible © ( s ) 2 —Pr=Scm
o1+

if B* ~ o, bunch samples bigger p than p* O, (S) =

beam size [m]
X (=3

Hourglass effect - head on collisions

1 T 05 [} 05
o0 distance from IP [m]
. - L reduction is non-negligible
. for long bunches and small
- LHC HL-LHC
04 W. Herr B*log>7 P*log~2
0 o 3 F~1 F~0.90
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LHC parameters

Parameter Nominal 2010 2011 2012
beam energy [TeV] 7.0 Bi5) &9 4.0
bunch spacing [ns] 25 150 75150 50

k [no. bunches] 2808 368 1380 1380
N, [10"" p/bunch] 1.15 1.2 1.45 1.6

¢ [mm mrad] SNIS 2.2 2.3 2.5
p* [m] 0.55 3.5 1.5>1 0.6
half crossing angle [urad] 142.5 100 120 145

L reduction factor ~0.84 ~1 0.95/0.91 ~0.8

L [cm2s] 1034 2x1032 3.5x10%  7.7x1083
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L evolution during a fill

natural decay, components
luminosity levelling
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diversion: what is a fill?

#:'dump

tme * fill: a complete machine cycle

+ includes all phases needed to get

to luminosity production
+ customarily: starts at dump
- also called “luminosity run”
note: “LHC run 1”7 is 2010-13
- need time to prepare before
10" p producing luminosity!
+ ramp-down, inject, ramp,
squeeze...

- efficiency is not 100%, even with
| 100% availability!

103:‘cm'25'1 2012 typ. time

450 GeV

3

1
| | prep  >50 min.
1 1
o] ! inj ~60 min.
luminosity ! !
| | ramp ~15 min.
1 1 .
preparation | injection ! ramp ! squeeze !collide squ. ~20 min.
coll. 0-20h
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L natural decay during a fill

+ not changing during the fill:
kN N f * v (set by magnetic field in bends)
= l—zyF - f(set by beam energy and tunnel length)

* * . . . . .
. set up during beam commissioning, compromise
4” /3 € Ee{weenpapertugre, collimator settings?tolerarl?\ces)

- with a couple of exceptions...
- k (set at injection)

L

- changing during a fill (and naming only a few causes):
* gincreases
« Intra Beam Scattering
« noise in power converters

+ Ny, N, decrease LHC
« luminosity burn-off (i.e. particle loss from collisions) Tgsx~ 105 h
- scattering on residual gas Tpss ~ 63h
- F changes 50~ 45 h
- imperfect overlap from orbit drifts, can be corrected by orbit corrections
Tgas > 100 h
CAS in Prague 2014 giulia.papotti@cern.ch 22
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max peak L is not all...

-+ might need luminosity control
- if too high can cause high voltage trips then impact efficiency
« might have event size or bandwidth limitations in read-out
» too many simultaneous event cause loss of resolution
. ...experiments also care about:
- time structure of the interactions: pile up
- average number of inelastic interactions per bunch crossing

(R)— dN _uf design 2010 2011 2012 HL-LHC
dt po 21 4 17 37 140

- spatial distribution of the interactions: pile-up density

+ e.g. HL-LHC: accept max pile up density of 1.3 events/mm
- quality of the interactions (e.g. background)
+ size of luminous region

+ e.g. need constant length (input to MonteCarlo simulations)
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L levelling

- some experiments need to limit the pile-up
thus luminosity per bunch pair
+ eg.u<21atLHCbin 2012

- stay as long as possible at the maximum value that experiment can
manage

which is lower than what the machine could provide
- maintain the luminosity constant over a period of time (i.e. the fill)

- possible techniques:
« by transversely offsetting the beams at the IP
by p*
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L levelling by separation

6 103 fill 2644

4.0
CMS X. Buffat
5 ATLAS 35
LHCb 530 H
4 virtual LHCb =
g25

Luminosity [a.u.]
)
7
/
paratiol
N
=)

g e
5 §1.5 .
£10 \r“wﬁ
1 , 05 .
950 2 4 6 8§ 10 12 14 16 00—=2 4 6 s 10 12 14 16
Times [h of luminosity production] Times [h of luminosity production]

- worked beautifully in LHC run 1 for LHCb and ALICE
Ax L + while ATLAS and CMS fully head-on
0_ = _410gL_ - can’t use it for all experiments at the same time
o 0 + Landau damping from beam-beam helps stability
+ might need different solutions for run 2 or HL-LHC
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L levelling with *

« reduce pB* in steps while keeping beams in collisions
- tested successfully at LHC in 2012 Machine Developments
- more to do with controls than beam physics

- 12 06 —
N::n C ~1 step / hour simulation by J.Wenningeri é,
g 2 r
S 10 =1 0.5 -
# C 1 ¢
o C B ©
= 8 —04 P
173 ~ | _
3 C ]
£ 6 o3
E [ _ 8
=] ]
a - =

4 o2

C 1, =81[h] E

2— Initial B* = 1.40 [m] — 0.1

C Final B* = 0.40 [m] ]

) e R N HA RS EAU I EIEIN R

0 2 4 6 8 10 12 14 16

Time [h]
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ideal run time -1-

- so far talked about instantaneous L
-+ but need integrated luminosity ( )
o
« gives the number of events N L(r)dt
- need to account for extra time to prepare a fill (t,)
- inject, ramp, squeeze, ...
» plus downtime (an accelerator is a very complex system!)

- exercise: assume exponential decay for L: L(t) = Loe_;

- calculate optimum run time (t,) to maximize the f L(l‘)dt
average luminosity <L> <L> 1
.+t
- need ror
« good peak luminosity L,
» good luminosity lifetime © LHC
« short preparation time
“turnaround”: jargon for “from dump to stable beams” t~15h
» good machine availability (little downtime, that goes into t ~5h
average preparation time) 2
t.~10h
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ideal run time -2-

- from 2012 LHC data
« based on more complicated and accurate model for L decay
+ numerical integration to find optimum t,

- derive optimum fill length: good agreement with previous simple model

—-— Fill 2691
—-—- Fill 2733
— — — Fill 3067|

Fill 3018|
— Fill 3185

Fill 3194
— Fill 3203
— Fill 3204

8 t 25h 5h 10 h
6
. optt, 7h 10h 15h
2
0

runtime optimum [h]
S

M. Hostettler

0 2 4 6 8 10 12 14 16 18 20
preparation time [h]
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L calibration

van der Meer scans
high beta runs
BhaBha scattering
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L measurements

70000

- relative and absolute L
- relative: based on an arbitrary scale

+ good enough to monitor variations
« e.g. for optimizing the rates in CCC

60000
50000
40000
30000
20000
10000

20:50:00 20:55:00

- absolute: mandatory to measure a process cross section
- reminder: N=0,,, L(t)dt
+ needs to be calibrated at some point in time

- calibrations
- from machine parameters
+ not directly from ¢, ., B*, Ny ,, ... (gives 5-10% precision only)
- from optical theorem
- from reactions with well known cross sections
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vdM scans

- first done by S. van der Meer at the ISR (1968) in one plane
- generalized to bunched beams by C. Rubbia at SppS

- recall: L, = fN,N,Q Q

- assumes uncorrelated densities in all planes

- key: calculate overlap from ratio of rates Q - R, (0)
+ by measuring rates for different overlaps and Y fR (5 )dd
integrating over the whole range Py M

- can measure rates R in arbitrary units!

- what it takes
» accurate bunch-by-bunch intensities
- dedicated fill: no crossing angle, few bunches
+ scansinX, y to get the overlaps Q,, Q,
+ need a few steps of o, for | Ry(5,) do,
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high beta runs

- optical theorem allows to link: % <
- total cross section
forward elastic scattering

,  léx (ﬂ)
“ 1+p2 =0

dt

- “forward” means “at small angle”
« use high p* optics to get small beam divergence

use Roman Pots: include silicon detectors that can get as
close as 1-4 mm to the beam 100000

e.g. TOTEM experiment at LHC
« use small emittance beams

dN/dt

+ can also study the Coulomb region, t > 0 ool
+ t=squared momentum transfer in particle scattering {
- see W. Herr, “Relativity” Y

Coulomb scattering can be computed reliably \“M
don’t need to measure the inelastic rate 0]
need * ~2.5 km at LHC

¢¢¢¢¢

W. Herr

« e.g. ALFA experiment at ATLAS

[ 5 10 15

20

t (Gev 31073
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from known cross section

- use reactions with well known cross sections -
+ o can be calculated with high precision L(t) = M
- high event rates for low statistical error
- background processes identified and/or subtracted

- lepton machines: e*e- elastic scattering (Bhabha scattering)
e'e” —=e'e
« have to go to small angles (o, <©3)
1 1
7" "(aT NG )

- small rates at high energy (oo 1/E?)
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linear colliders

disruption, pinch effect
enhancement factor
beamstrahlung
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linear colliders

- e.g.
« SLC at SLAC, operated in the 90’s
» being designed: CLIC and ILC

- with electron-positron collisions (e+e-)

« linear: particles collide only once

« from “revolution” to “repetition” frequency (f.e,)
+ e.g. 120 Hz at SLC, 5 Hz at ILC, 50 Hz at CLIC
 thus need intense beams to reach high luminosity

- intense beams cause intense electromagnetic fields affecting the
particles in the opposing beam
- disruption effects
- beamstrahlung effects
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disruption effects -1-

- strong field by one beam bends the opposing particle trajectories
2r.No,

- quantified by disruption parameter D = ——————~—
Yo, (ox + ay)

- nominal beam size is reduced by the disruptive field (pinch effect)
- additional focusing for the opposing beam

r.: electron classical radius

N: bunch population

0, transverse beam size at the collision point
v: relativistic factor
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disruption effects -2-

o0
- define an “enhancement factor” H,: H,=——
0.0,
+ so luminosity can be re-written:
L - NlNZkf;’ep L - HDNINZkf‘rep
476 0, 4700,

- for round beams (D,=D,) and weak disruption (D<<1):

2 2
H,=1+———+0(D%)
3JxD
- beyond D<<1, need simulations
D: disruption parameter
© Oy, [ G,y ]: transverse beam size at the collision point [resp.: effective beam size]
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beamstrahlung

- disruption at the interaction point is a strong bending:

- results in synchrotron radiation (beamstrahlung)
- causes spread of centre-of-mass energy
 high energy photons increase detector background

- quantified by beamstrahlung parameter Y

(E+B) 5 1N
Y=y ~—
B, 6 ao, (ox +oy)

2.3
mc

- with B.= ~4.4-10"Gauss

eh
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wrap-up

bunch spacing
filling schemes

luminosity scans

collider
rates, events

van der Meer scans
high beta runs

turnaround time
preparation time
crossing angle
hourglass effect
offset collisions

beamstrahlung

L= kNlszy F disruption
4.7'[/5*8 pinch effect
squeeze
levelling by p*
) levelling by offset
cross section
pile-up
30 fb-', 700 Higgs events
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