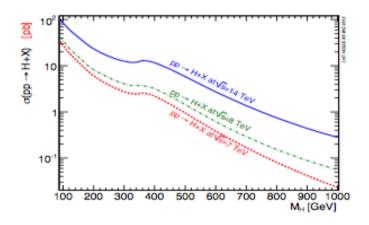


Bibliography

- W. Herr and B. Muratori, many many luminosity lectures at previous CERN Accelerator Schools.
- M. Ferro-Luzzi, "A novel method for measuring absolute luminosity at the LHC", CERN-PH seminar, 29 August 2005.
- J. Wenninger, "Luminosity diagnostics", CAS on Beam Diagnostics, Dourdan (France), June 2008.
- P. Grafstrom and W. Kozanecki, "Luminosity determination at proton colliders", to be published in Prog. Part. Nucl. Phys.
- A. Chao and M. Tigner, "Handbook of accelerator physics and engineering", World Scientific, 2002.



collider

- at high energy to probe smaller scales or to produce heavier particles
 - lighter particles were studied in older machines
 "to boldly go where no man has gone before"
 - some events only possible at higher energies
 - collider as last stage of the accelerator chain
 - e.g. at CERN: Linac+PSB+PS+SPS+LHC

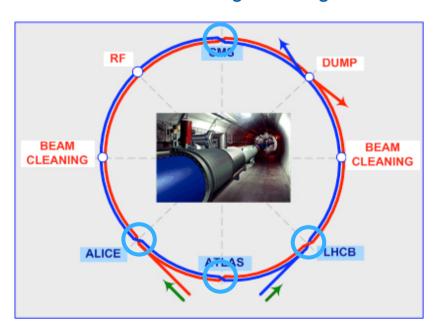
- higher available energy by colliding two beams $(-\underline{p}_1 = \underline{p}_2, \, \underline{E}_1 = \underline{E}_2 = \underline{E} + \underline{m}_0)$
- than using a fixed target ($p_2=0$, $E_2=m_0$)
 - see W. Herr, "Relativity"

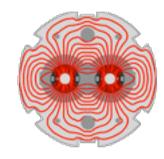
$$E_{cm} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

- need many interactions to explore and prove rare events
 - luminosity measures the number of events for the experiments

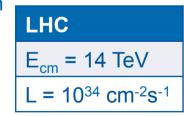
CAS in Prague 2014

→ figures of merit of a collider: energy E_{cm} and luminosity L

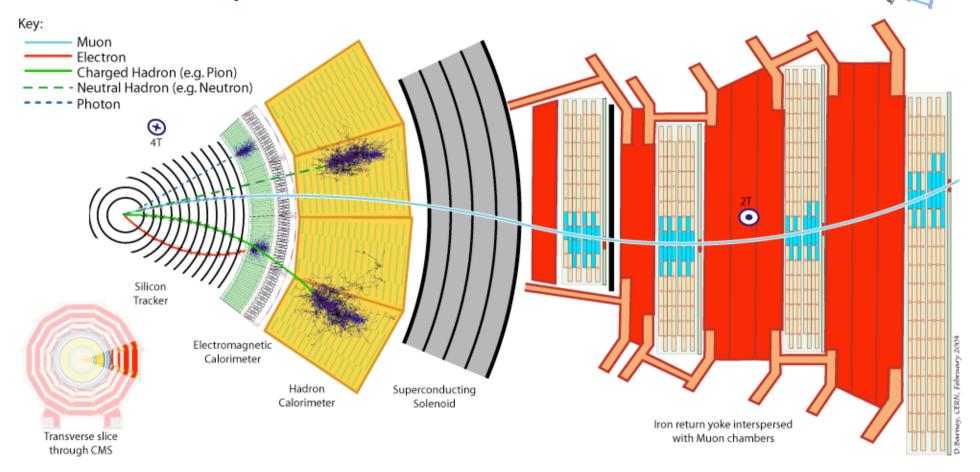



e.g.: the Large Hadron Collider

- main example in this lecture
- choice of beam particle:
 - for a discovery machine, need hadrons
 - use proton-proton to have many events
- → same particles to counter-rotate: need two rings


CAS in Prague 2014

2-in-1 magnet design

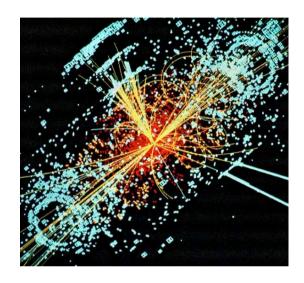

- LHC layout
 - 8 arcs and 8 straight sections (SS)
 - 4 SS for machine equipment
 - 4 SS for experiments
 - · Alice, ATLAS, CMS, LHCb
 - common vacuum chamber in 4 interaction points only
 - note: also single ring colliders exist
 - e.g. SppS, LEP, Tevatron

diversion: a CMS slice

or "what the experiments do with the collisions"

...but that is another story and shall be told another time

outline


- (motivation)
- luminosity
 - · definition and derivation from machine parameters
 - head-on and offset collisions
 - reduction factors
 - crossing angles and crab cavities, hourglass
 - lifetime, contributions
 - Iuminosity scans and luminosity levelling
- integrated luminosity and ideal run time
- measurements and optimizations
 - vdM scans, high beta runs
- linear colliders

- no fixed target
- no coasting beams

definition: cross section

- process: a particle encounters a target
 - e.g. another beam
 - the encounter produces a certain final state composed of various particles (with a certain probability)

- cross-section σ_{event} expresses the likelihood of the process
 - σ_{event} represents the "area" over which the process occurs
 - units: [m²]
 - in nuclear and high energy physics: 1 barn (1 b = 10⁻²⁴ cm²)

definition: Luminosity (L)

$$R = \frac{dN}{dt} = L(t)\sigma_{event}$$

- luminosity L relates cross-section σ and event rate R = dN/dt at time t :
 - quantifies performance ("brilliance") of collider
 - relativistic invariant and independent of physical reaction

$$N = \sigma_{event} \int L(t) dt$$

- accelerator operation aims at maximizing the total number of events N for the experiments
 - σ_{event} is fixed by Nature
 - aim at maximizing ∫L(t)dt

- units : [m⁻² s⁻¹]
 - \int Ldt is frequently expressed in pb⁻¹ = 10^{36} cm⁻² or fb⁻¹ = 10^{39} cm⁻²
- e.g.: from LHC run 1, ATLAS+CMS got 1400 Higgs events in total
 - in ~30 fb⁻¹ each: 6.1 fb⁻¹ in 2011, 23.3 fb⁻¹ in 2012

LHC
N = 5
$\sigma_{\rm event}$ = 0.5 fb = 0.5 10 ⁻³⁹ cm ²
$\int L(t) dt = 10 \text{ fb}^{-1}$

circular colliders

Machine	Years in operation	Beam type	Beam energy [GeV]	Luminosity [cm ⁻² s ⁻¹]
ISR	1971-'84	рр	31	>2x10 ³¹
LEP I	1989-'95	e+ e-	45	3x10 ³⁰
LEP II	1995-2000	e+ e-	90-104	10 ³²
KEKB	1999-2010	e+ e-	8 x 3.5	2x10 ³⁴
SppS	1981-'84	p anti-p	270	6x10 ³⁰
TEVATRON	1983-2011	p anti-p	980	2x10 ³²
LHC	2008-?	рр	7000	10 ³⁴

L from machine parameters -1-

intuitively: more L if there are more protons and more tightly packed

$$L \propto N_1 N_2 \Omega_{x,y}$$

$$L \propto N_1 N_2 K \int_{x,y,s,s_0} \rho_1(x,y,s,-s_0) \rho_2(x,y,s,s_0) dx dy ds ds_0$$

- K = 2 c: kinematic factor (see W. Herr, "Relativity")
- N₁, N₂: bunch population
- $\rho_{1,2}$: density distribution of the particles (normalized to 1)
- x,y: transverse coordinates
- s: longitudinal coordinate
- s_0 : "time variable", $s_0 = c t$
- $\Omega_{x,y}$: overlap integral

L from machine parameters -2-

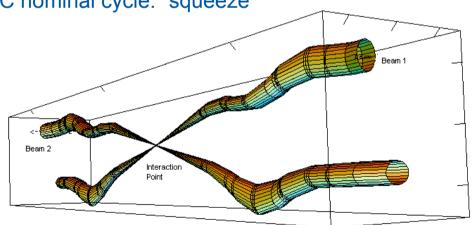
- for a circular machine can reuse the beams f times per second (storage ring)
- for k colliding bunch pairs per beam
- for uncorrelated densities in all planes: $\rho(x,y,s,t) = \rho_x(x)\rho_y(y)\rho_s(s-vt)$

$$L = 2fkN_1N_2 \int_{x,y,s,s_0} \rho_{1x}(x)\rho_{1y}(y)\rho_{1s}(s-s_0)\rho_{2x}(x)\rho_{2y}(y)\rho_{2s}(s+s_0) dx dy ds ds_0$$

• for Gaussian bunches:
$$\rho_u(u) = \frac{1}{\sigma_u \sqrt{2\pi}} \exp\left\{-\frac{(u - u_0)^2}{2\sigma_u^2}\right\};$$
 $\int_{-\infty}^{+\infty} e^{-at^2} = \sqrt{\frac{\pi}{a}}$

$$\int_{-\infty}^{+\infty} e^{-at^2} = \sqrt{\frac{\pi}{a}}$$

- for equal beams in x or y: $\sigma_{1x} = \sigma_{2x}$, $\sigma_{1y} = \sigma_{2y}$
- can derive a closed expression:
- f: revolution frequency
- k: number of colliding bunch pairs at that Interaction Point (IP)
- N_1 , N_2 : bunch population
- σ_{xy} : transverse beam size at the collision point


LHC k = 2808 $N_1, N_2 = 1.15 \cdot 10^{11} \text{ ppb}$ f = 11.25 kHz σ_{x} , σ_{v} = 16.6 μ m $L = 1.2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

need for small β*

• expand physical beam size
$$\sigma_{x,y}$$
: $\sigma_x^* = \sigma_y^* = \sqrt{\frac{\beta^* \varepsilon}{\gamma}}$ \rightarrow $L = \frac{kN_1N_2f}{4\pi \beta^* \varepsilon}$

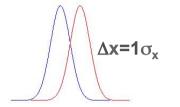
- try and conserve low ε from injectors
 - explicit dependence on energy (γ)
- intensity pays more than ε and β*
- design low β^* insertions
 - limits by triplet aperture, protection by collimators

in LHC nominal cycle: "squeeze"

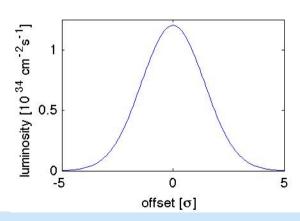
Relative beam sizes around IP1 (Atlas) in collision

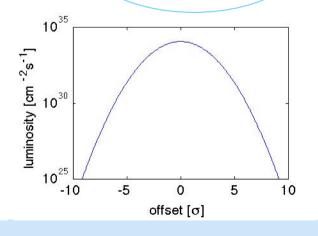
LHC
$\beta^* = 18 \Rightarrow 0.55 \text{ m}$
ε = 3.75 μ m
γ = 7463
$\sigma_{x,y}$ = 16.6 μ m

reduction factors (F)


transverse offsets crossing angles and crab cavities hourglass effect

transverse offsets -1-


• in case the beams do not overlap in the transverse plane (e.g. in x)



more generally

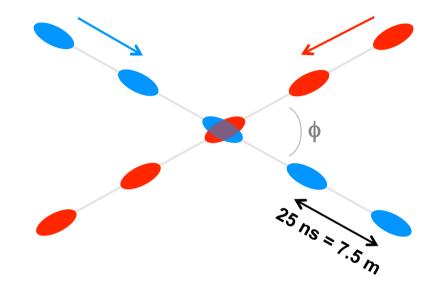
$$L = \frac{kN_1N_2f}{4\pi\sigma_x\sigma_y} \exp\left\{-\frac{\Delta x^2}{4\sigma_x^2} - \frac{\Delta y^2}{4\sigma_y^2}\right\}$$
 F

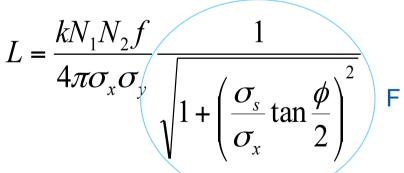
Δχ	F
0	1
1σ	0.779
2 σ	0.368
3 σ	0.105
4 σ	0.018
5 σ	0.002

transverse offsets -2-

more general expression including different beam sizes:

CAS in Prague 2014


• $\sigma_{1x} \neq \sigma_{2x}$, $\sigma_{1y} \neq \sigma_{2y}$


$$L = \frac{kN_1N_2f}{2\pi\sqrt{(\sigma_{x,1}^2 + \sigma_{x,2}^2)(\sigma_{y,1}^2 + \sigma_{y,2}^2)}} \exp\left\{-\frac{(\Delta x)^2}{2(\sigma_{x,1}^2 + \sigma_{x,2}^2)} - \frac{(\Delta y)^2}{2(\sigma_{y,1}^2 + \sigma_{y,2}^2)}\right\}$$

crossing angles -1-

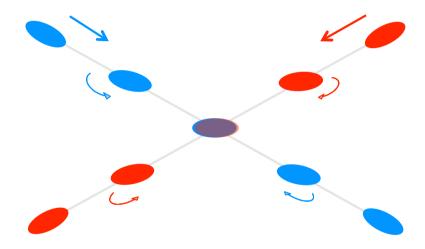
- to avoid parasitic collisions when there are many bunches
 - otherwise collisions elsewhere than in interaction point only
 - e.g.: CMS experiment is 21 m long, common vacuum pipe is 120 m long
- luminosity is reduced as the particles no longer traverse the entire length of the counter-rotating bunch

 $\frac{\sigma_s}{\sigma_x} \tan \frac{\varphi}{2}$ is called the Piwinski angle

valid for small ϕ and $\sigma_s{>>}\sigma_x{,}\sigma_y$

LHC

 ϕ = 285 μ rad

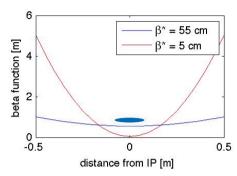

 $\sigma_{\rm s}$ = 7.5 cm

F = 0.84

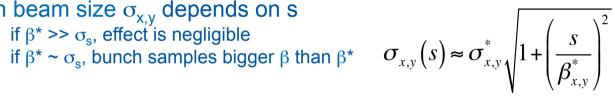
crossing angles -2-

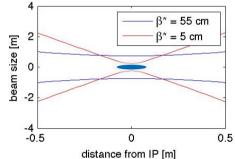
- for very small β^* , need big crossing angle: big reduction in L
 - e.g. for LHC upgrade (HL-LHC): $\beta^* = 15$ cm, $\phi = 590$ µrad, F ~ 0.35
- "crab crossing" scheme being considered

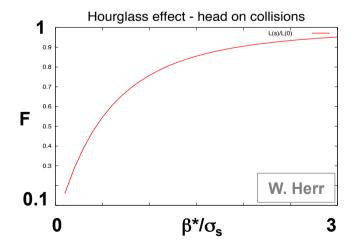
- use fast RF cavities for bunch rotation (transverse deflection)
 - used at KEKB, but with leptons and "global" scheme
 - at LHC, need "local" scheme due to collimators, need compact cavities
 - feasibility to be demonstrated, studies on-going



hourglass effect




- β depends on longitudinal position s
 - see B. Holzer, chapter on Insertions in "Transverse Beam Dynamics"


$$\beta(s) \approx \beta^* \left(1 + \left(\frac{s}{\beta^*} \right)^2 \right)$$

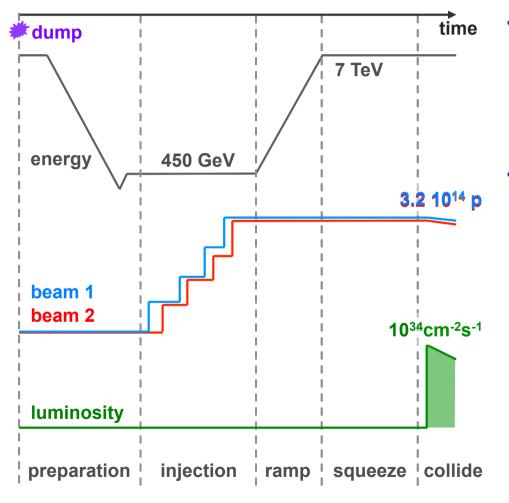
- then beam size $\sigma_{\textbf{x},\textbf{y}}$ depends on s
 - if $\beta^* >> \sigma_s$, effect is negligible

• L reduction is non-negligible for long bunches and small β

LHC	HL-LHC
$\beta^*/\sigma_s > 7$	$\beta^*/\sigma_s \sim 2$
F ~ 1	F ~ 0.90

LHC parameters

Parameter	Nominal	2010	2011	2012
beam energy [TeV]	7.0	3.5	3.5	4.0
bunch spacing [ns]	25	150	75 / 50	50
k [no. bunches]	2808	368	1380	1380
N _b [10 ¹¹ p/bunch]	1.15	1.2	1.45	1.6
ε [mm mrad]	3.75	2.2	2.3	2.5
β* [m]	0.55	3.5	1.5 → 1	0.6
half crossing angle [μrad]	142.5	100	120	145
L reduction factor	~0.84	~1	0.95/0.91	~0.8
L [cm ⁻² s ⁻¹]	10 ³⁴	2×10 ³²	3.5×10 ³³	7.7×10 ³³



L evolution during a fill

natural decay, components luminosity levelling

diversion: what is a fill?

- fill: a complete machine cycle
 - includes all phases needed to get to luminosity production
 - customarily: starts at dump
 - also called "luminosity run"
 - note: "LHC run 1" is 2010-13
- need time to prepare before producing luminosity!
 - ramp-down, inject, ramp, squeeze...
 - efficiency is not 100%, even with 100% availability!

2012	typ. time
prep	>50 min.
inj	~60 min.
ramp	~15 min.
squ.	~20 min.
coll.	0-20 h

L natural decay during a fill

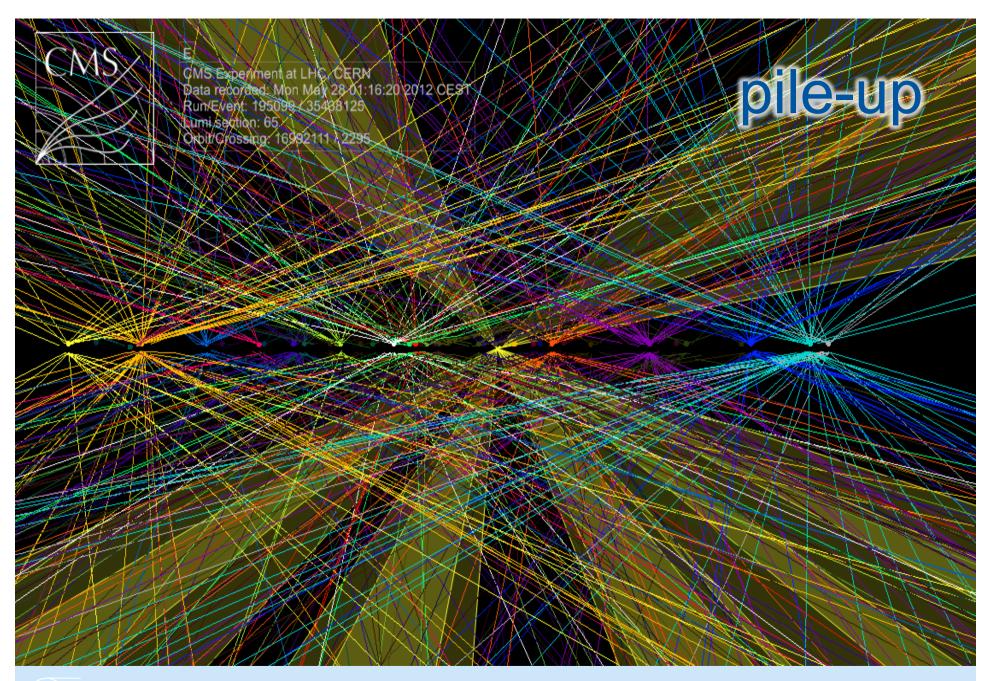
$$L = \frac{kN_1N_2f\gamma}{4\pi\beta^*\varepsilon}F$$

- not changing during the fill:
 - γ (set by magnetic field in bends)
 - f (set by beam energy and tunnel length)
 - β^* (set up during beam commissioning, compromise between aperture, collimator settings, tolerances)
 - with a couple of exceptions...
 - k (set at injection)
- changing during a fill (and naming only a few causes):
 - ε increases
 - Intra Beam Scattering
 - · noise in power converters
 - N₁, N₂ decrease
 - luminosity burn-off (i.e. particle loss from collisions)
 - scattering on residual gas
 - F changes
 - imperfect overlap from orbit drifts, can be corrected by orbit corrections

LHC
τ _{IBS,x} ~ 105 h
$\tau_{\rm IBS,s} \sim 63h$
τ _{B.O.} ~ 45 h
$\tau_{\rm gas}$ > 100 h

max peak L is not all...

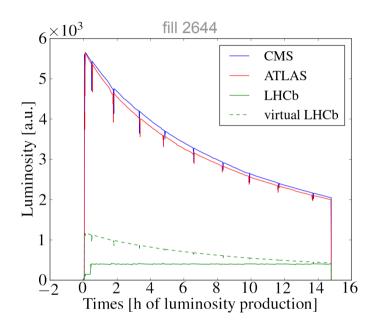
- experiments might need luminosity control
 - if too high can cause high voltage trips then impact efficiency
 - might have event size or bandwidth limitations in read-out
 - too many simultaneous event cause loss of resolution
- ...experiments also care about:
 - time structure of the interactions: pile up μ
 - · average number of inelastic interactions per bunch crossing

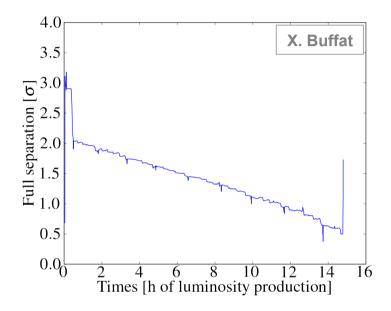

$\langle R \rangle =$	$/\underline{dN}\setminus$	_	ıı f
\ <i>I</i> \/ -	\sqrt{dt}	_	μf

	design	2010	2011	2012	HL-LHC
μ	21	4	17	37	140

spatial distribution of the interactions: pile-up density

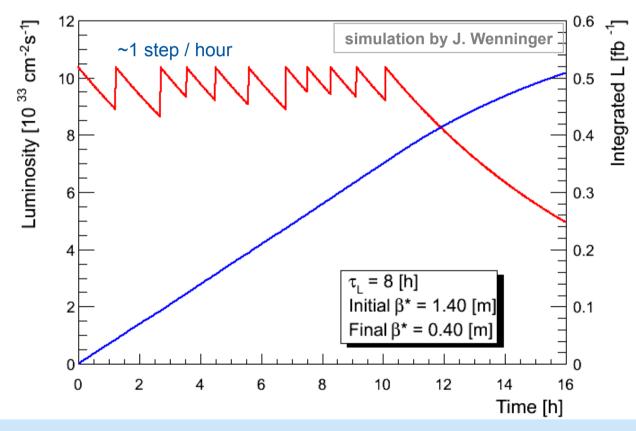
- e.g. HL-LHC: accept max pile up density of 1.3 events/mm
- quality of the interactions (e.g. background)
- size of luminous region
 - e.g. need constant length (input to MonteCarlo simulations)




L levelling

- some experiments need to limit the pile-up
 - thus luminosity per bunch pair
 - e.g. μ < 2.1 at LHCb in 2012
- stay as long as possible at the maximum value that experiment can manage
 - which is lower than what the machine could provide
- maintain the luminosity constant over a period of time (i.e. the fill)
- possible techniques:
 - by transversely offsetting the beams at the IP
 - by β*
 - •

L levelling by separation

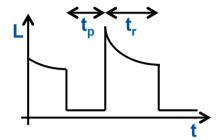


$$\frac{\Delta x}{\sigma_x} = \sqrt{-4\log\frac{L}{L_0}}$$

- worked beautifully in LHC run 1 for LHCb and ALICE
 - while ATLAS and CMS fully head-on
- · can't use it for all experiments at the same time
 - Landau damping from beam-beam helps stability
- might need different solutions for run 2 or HL-LHC

L levelling with β^*

- reduce β^* in steps while keeping beams in collisions
- tested successfully at LHC in 2012 Machine Developments
 - more to do with controls than beam physics

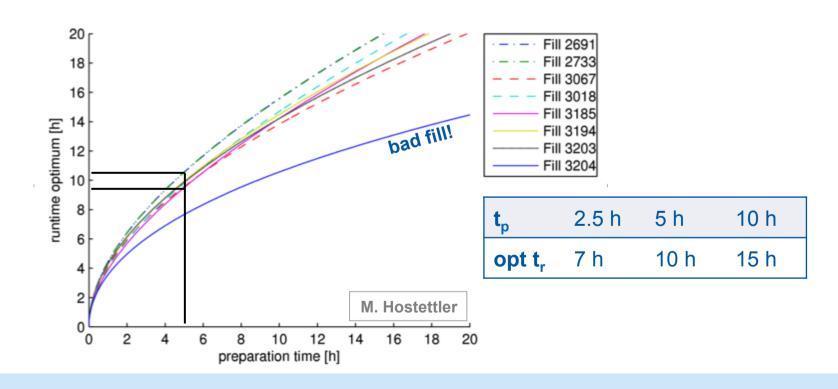


ideal run time -1-

- so far talked about instantaneous L
- but need integrated luminosity $N \propto \int L(t) dt$
- need to account for extra time to prepare a fill (t_p)
 - inject, ramp, squeeze, ...
 - plus downtime (an accelerator is a very complex system!)

 calculate optimum run time (t_r) to maximize the average luminosity <L>

$$\langle L \rangle = \frac{\int_{t_r} L(t) dt}{t_r + t_p}$$

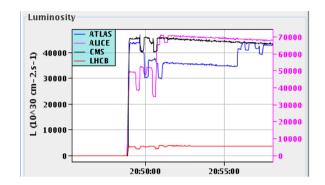

- need
 - good peak luminosity L₀
 - good luminosity lifetime τ
 - short preparation time
 - "turnaround": jargon for "from dump to stable beams"
 - good machine availability (little downtime, that goes into average preparation time)

LHC
τ ~ 15 h
t _p ~ 5 h
t _r ~ 10 h

ideal run time -2-

- from 2012 LHC data
 - based on more complicated and accurate model for L decay

- numerical integration to find optimum t_r
- derive optimum fill length: good agreement with previous simple model


L calibration

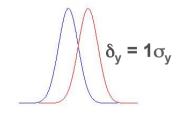
van der Meer scans high beta runs BhaBha scattering

L measurements

- relative and absolute L
 - relative: based on an arbitrary scale
 - good enough to monitor variations
 - · e.g. for optimizing the rates in the control room

- absolute: mandatory to measure a process cross section reminder: $N = \sigma_{event} \int L(t) dt$

 - needs to be calibrated at some point in time
- calibrations
 - from machine parameters
 - not directly from $\varepsilon_{x,y}$, β^* , $N_{1,2}$, ... (gives 5-10% precision only)
 - from optical theorem
 - from reactions with well known cross sections

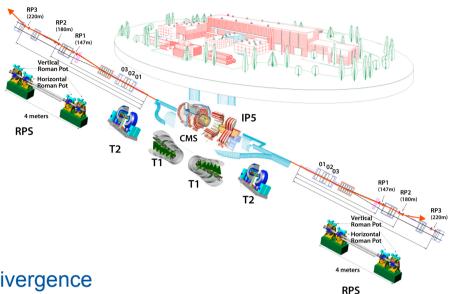

vdM scans

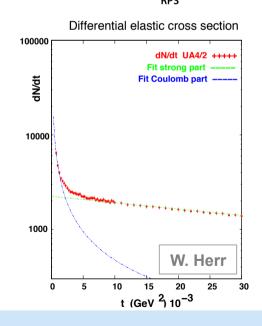
- first done by S. van der Meer at the ISR (1968) in one plane
 - generalized to bunched beams by C. Rubbia at SppS
- recall: $L_b = fN_1N_2\Omega_x\Omega_y$ assumes uncorrelated densities in all planes
- key: calculate overlap from ratio of rates
 - by measuring rates for different overlaps and integrating over the whole range
 - can measure rates R in arbitrary units!

 $\Omega_{y} = \frac{R_{y}(0)}{\int R_{y}(\delta_{y})d\delta_{y}}$

- what it takes
 - accurate bunch-by-bunch intensities
 - dedicated fill: no crossing angle, few bunches

- scans in x, y to get the overlaps Ω_x , Ω_v
 - need a few steps of δ_v for $\int R_v(\delta_v) d\delta_v$


high beta runs


- optical theorem allows to link:
 - total cross section
 - forward elastic scattering

$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \left(\frac{d\sigma_{el}}{dt}\right)_{t=0}$$

- use high β^* optics to get small beam divergence
 - use Roman Pots: include silicon detectors that can get as close as 1-4 mm to the beam
 - · e.g. TOTEM experiment at LHC
- use small emittance beams
- can also study the Coulomb region, t → 0
 - t = squared momentum transfer in particle scattering
 - see W. Herr, "Relativity"
 - Coulomb scattering can be computed reliably
 - don't need to measure the inelastic rate
 - need β* ~2.5 km at LHC
 - · e.g. ALFA experiment at ATLAS

from known cross section

- use reactions with well known cross sections
 - σ can be calculated with high precision

 $L(t) = \frac{R}{\sigma} = \frac{dN / dt}{\sigma}$

- high event rates for low statistical error
- background processes identified and/or subtracted
- lepton machines: e⁺e⁻ elastic scattering (Bhabha scattering)

$$e^+e^- \rightarrow e^+e^-$$

• have to go to small angles ($\sigma \propto \Theta^{-3}$)

$$\sigma = k \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$$

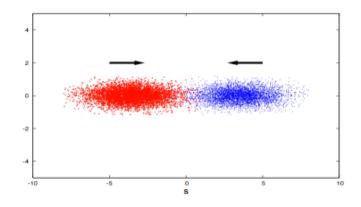
small rates at high energy (σ ∝ 1/E²)

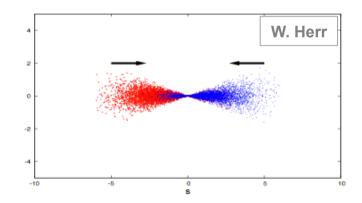
linear colliders

CAS in Prague 2014

disruption, pinch effect enhancement factor beamstrahlung

linear colliders


- e.g.:
 - SLC at SLAC, operated in the 90's
 - being designed: CLIC and ILC
- with electron-positron collisions (e+e-)
- linear: particles collide only once
 - from "revolution" to "repetition" frequency (f_{rep})
 - e.g. 120 Hz at SLC, 5 Hz at ILC, 50 Hz at CLIC
 - thus need bright, intense beams to reach high luminosity
- intense beams cause intense electromagnetic fields affecting the particles in the opposing beam
 - disruption effects
 - beamstrahlung effects



disruption effects -1-

- strong field by one beam bends the opposing particle trajectories
- quantified by disruption parameter $D_{x,y} = \frac{2r_eN\sigma_s}{\gamma\sigma_{x,y}(\sigma_x + \sigma_y)}$
- nominal beam size is reduced by the disruptive field (pinch effect)
 - additional focusing for the opposing beam

- r_e: electron classical radius
- N: bunch population
- $\sigma_{x,y,s}$: beam size at the collision point
- γ: relativistic factor

disruption effects -2-

- define an "enhancement factor" H_D : $H_D = \frac{\sigma_x \sigma_y}{\overline{\sigma}_x \overline{\sigma}_y}$
- so luminosity can be re-written:

$$L = \frac{N_1 N_2 k f_{rep}}{4\pi \bar{\sigma}_x \bar{\sigma}_y} \rightarrow L = \frac{H_D N_1 N_2 k f_{rep}}{4\pi \sigma_x \sigma_y}$$

for round beams (D_x=D_y) and weak disruption (D<<1):

$$H_D = 1 + \frac{2}{3\sqrt{\pi}D} + O(D^2)$$

beyond D<<1, need simulations

- D: disruption parameter
- $\sigma_{x,y}$ [$\overline{\sigma_{x,y}}$]: transverse beam size at the collision point [resp.: effective beam size]

beamstrahlung

- disruption at the interaction point is a strong bending:
- results in synchrotron radiation (beamstrahlung)

- · causes spread of centre-of-mass energy
- high energy photons increase detector background
- quantified by beamstrahlung parameter Y

$$Y = \gamma \frac{\langle E + B \rangle}{B_C} \approx \frac{5}{6} \frac{r_e^2 \gamma N}{\alpha \sigma_s (\sigma_x + \sigma_y)}$$

• with
$$B_C = \frac{m^2 c^3}{e\hbar} \approx 4.4 \cdot 10^{13} \text{ Gauss}$$

wrap-up

turnaround time preparation time

bunch spacing filling schemes

crossing angle hourglass effect offset collisions

luminosity scans

collider rates, events

$$L = \frac{kN_1N_2f\gamma}{4\pi\beta^*\varepsilon}F$$

beamstrahlung disruption pinch effect

van der Meer scans high beta runs

cross section pile-up 30 fb⁻¹, 700 Higgs events

squeeze levelling by β^* levelling by offset