

The CERN Accelerator School

Introduction to Accelerator Physics, Prague, Czech Republic, 31 Aug – 12 Sept 2014

Definitions & basic concepts

dB

t-domain vs. ω -domain phasors

Decibel (dB)

- Convenient logarithmic measure of a power ratio.
- A "Bel" (= 10 dB) is defined as a power ratio of 10^1 . Consequently, 1 dB is a power ratio of $10^{0.1} \approx 1.259$.
- If *rdb* denotes the measure in dB, we have:

$$rdB = 10 \text{ dB} \log\left(\frac{P_2}{P_1}\right) = 10 \text{ dB} \log\left(\frac{A_2^2}{A_1^2}\right) = 20 \text{ dB} \log\left(\frac{A_2}{A_1}\right)$$
$$\frac{A_2^2}{A_2^2} = 10^{rdb/(10 \text{ dB})} \qquad \qquad \frac{A_2}{A_2} = 10^{rdb/(20 \text{ dB})}$$

$$\frac{P_2}{P_1} = \frac{A_2^2}{A_1^2} = 10^{rdb/(10 \text{ dB})} \qquad \qquad \frac{A_2}{A_1} = 10^{rdb/(20 \text{ dB})}$$

rdB	-30 dB	-20 dB	-10 dB	-6 dB	—3 dB	0 dB	3 dB	6 dB	10 dB	20 dB	30 dB
$\frac{P_2}{P_1}$	0.001	0.01	0.1	0.25	.50	1	2	3.98	10	100	1000
	0.0316										

• Related: dBm (relative to 1 mW), dBc (relative to carrier)

8th Sept, 2014

CAS Prague - EJ: RF Systems I

Time domain – frequency domain (1)

• An arbitrary signal g(t) can be expressed in ω -domain using the **Fourier transform** (FT).

$$g(t) \ge G(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t) e^{j\omega t} dt$$

• The inverse transform (IFT) is also referred to as *Fourier Integral.*

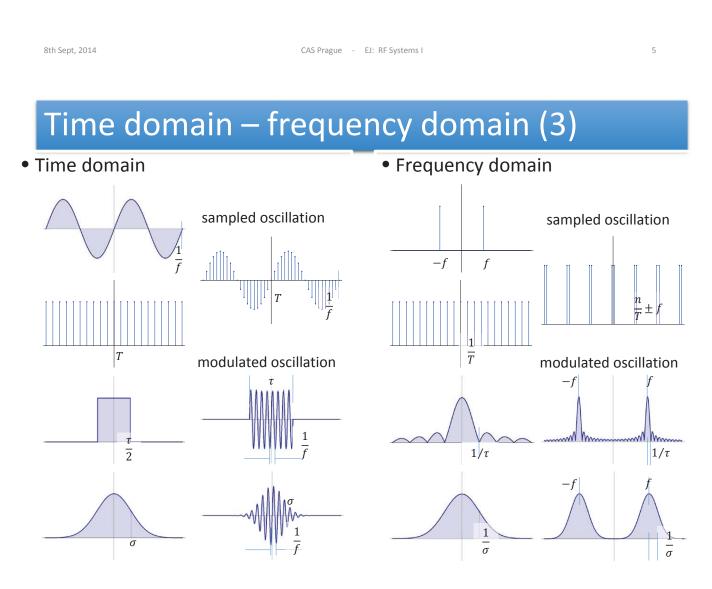
$$G(\omega) \leq g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) e^{-j\omega t} d\omega$$

- The advantage of the ω -domain description is that linear time-invariant (LTI) systems are much easier described.
- The mathematics of the FT requires the extension of the definition of a *function* to allow for infinite values and non-converging integrals.
- The FT of the signal can be understood at looking at "what frequency components it's composed of".

3

Time domain – frequency domain (2)

- For *T*-periodic signals, the FT becomes the Fourier-Series, $d\omega$ becomes $2\pi/T$, \int becomes Σ .
- The cousin of the FT is the *Laplace transform*, which uses a complex variable (often s) instead of jω; it has generally a better convergence behaviour.
- Numerical implementations of the FT require discretisation in t (sampling) and in ω . There exist very effective algorithms (FFT).
- In digital signal processing, one often uses the related z-Transform, which uses the variable $z = e^{j\omega\tau}$, where τ is the sampling period. A delay of $k\tau$ becomes z^{-k} .



Fixed frequency oscillation (steady state, CW) Definition of phasors

- General: $A \cos(\omega t \varphi) = A \cos \omega t \cos \varphi + A \sin \omega t \sin \varphi$
- This can be interpreted as the projection on the real axis of a rotation in the complex plane.

$$\Re \{A(\cos\varphi + j\sin\varphi)e^{j\omega t}\}$$



real part

• The complex amplitude \tilde{A} is called "phasor";

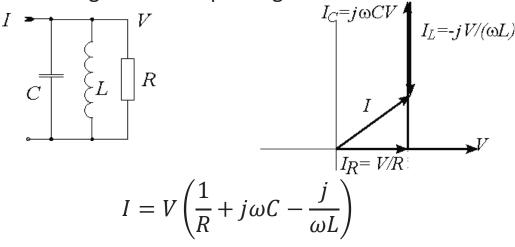
$$\tilde{A} = A(\cos\varphi + j\sin\varphi)$$

8th Sept, 2014

CAS Prague - EJ: RF Systems I

Calculus with phasors

- Why this seeming "complication"?: Because things become easier!
- Using $\frac{d}{dt} \equiv j\omega$, one may now forget about the rotation with ω and the projection on the real axis, and do the complete analysis making use of complex algebra!



7

Slowly varying amplitudes

- For band-limited signals, one may conveniently use "slowly varying" phasors and a fixed frequency RF oscillation.
- So-called in-phase (*I*) and quadrature (*Q*) "baseband envelopes" of a modulated RF carrier are the real and imaginary part of a slowly varying phasor.

8th Sept, 2014

CAS Prague - EJ: RF Systems I

On Modulation

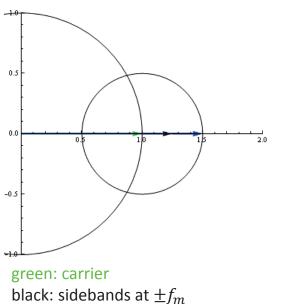
AM PM

I-Q

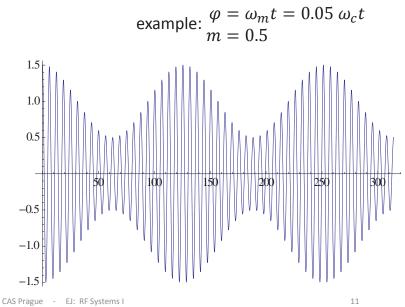
9

Amplitude modulation

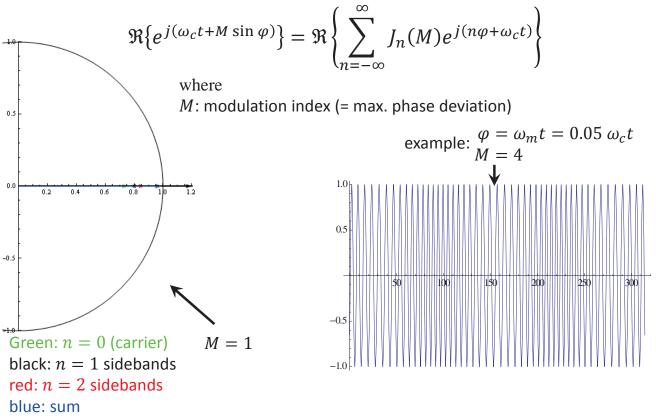
$$(1 + m\cos\varphi) \cdot \cos(\omega_c t) = \Re\left\{ \left(1 + \frac{m}{2}e^{j\varphi} + \frac{m}{2}e^{-j\varphi}\right)e^{j\omega_c t} \right\}$$



m: modulation index or modulation depth



Phase modulation



8th Sept, 2014

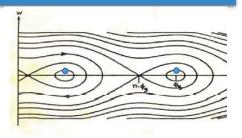
blue: sum

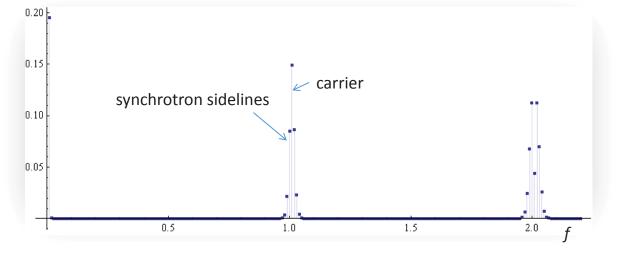
8th Sept, 2014

Spectrum of phase modulation

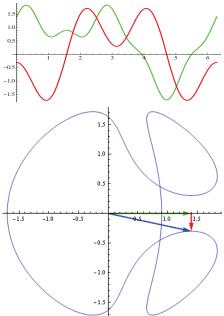
1.0 0.5 0.0 Plotted: spectral lines for -0.5 sinusoidal PM at f_m -1.0-4 -20 2 Abscissa: $(f - f_c)/f_m$ 4 1.0 0.5 I 0.0 -0.5 -1.0 -2 2 -4 0 4 0.5 1.0 0.5 I I. I 0.0 -0.5 -0.5 0.5 -1.0-4 -20 2 4 1.0 -0.5 0.5 I I 0.0 l I. L L -0.5 -1.0-2 0 2 -4 4 Phase modulation with $M = \pi$: 1.0 red: real phase modulation 0.5 L I L L i. blue: sum of sidebands $n \leq 3$ 0.0 -0.5 -1.08th Sept, 2014 -2 0 2 4 -4 CAS Prague - EJ: RF Systems

Spectrum of a beam with synchrotron oscillation, $M = 1 (= 57^{\circ})$





Vector (I-Q) modulation



I-Q modulation: green: *I* component red: *Q* component blue: vector-sum More generally, a modulation can have both amplitude and phase modulating components. They can be described as the in-phase (*I*) and quadrature (*Q*) components in a chosen reference, $\cos(\omega_r t)$. In complex notation, the modulated RF is:

 $\Re\{(I(t) + j Q(t))e^{j \omega_r t}\} = \\ \Re\{(I(t) + j Q(t))(\cos(\omega_r t) + j \sin(\omega_r t))\} = \\ I(t)\cos(\omega_r t) - Q(t)\sin(\omega_r t)$

So *I* and *Q* are the Cartesian coordinates in the complex "Phasor" plane, where amplitude and phase are the corresponding polar coordinates.

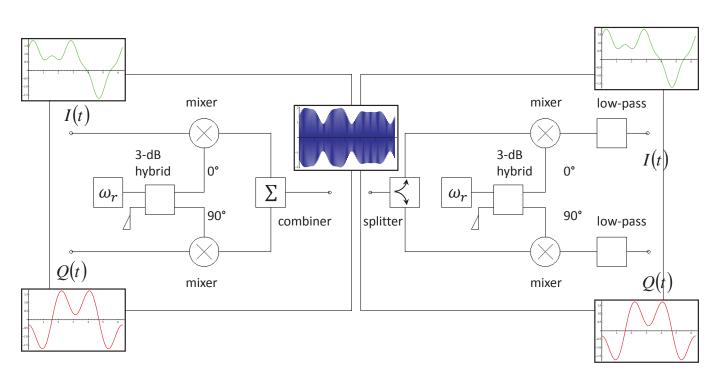
 $I(t) = A(t)\cos(\varphi)$ $Q(t) = A(t)\sin(\varphi)$

8th Sept, 2014

CAS Prague - EJ: RF Systems I

15

Vector modulator/demodulator



Digital Signal Processing

Just some basics

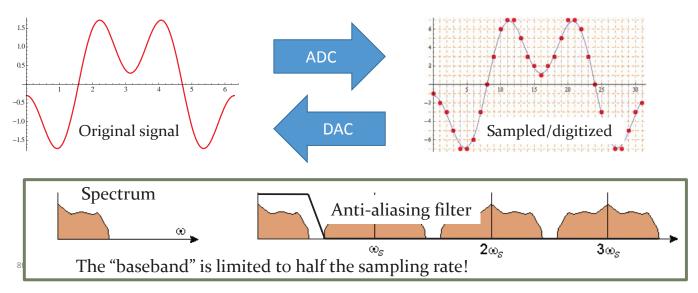
8th Sept, 2014

CAS Prague - EJ: RF Systems I

17

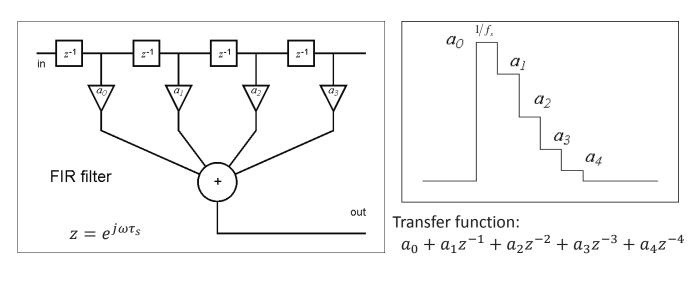
Sampling and quantization

- Digital Signal Processing is very powerful note recent progress in digital audio, video and communication!
- Concepts and modules developed for a huge market; highly sophisticated modules available "off the shelf".
- The "slowly varying" phasors are ideal to be sampled and quantized as needed for digital signal processing.
- Sampling (at $1/\tau_s$) and quantization (*n* bit data words here 4 bit):



Digital filters (1)

- Once in the digital realm, signal processing becomes "computing"!
- In a "finite impulse response" (FIR) filter, you directly program the coefficients of the impulse response.



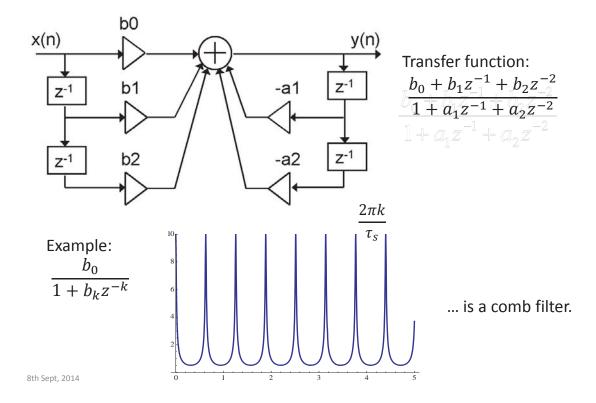
8th Sept, 2014

CAS Prague - EJ: RF Systems I

19

Digital filters (2)

• An "infinite impulse response" (IIR) filter has built-in recursion, e.g. like

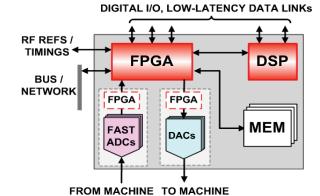


Digital LLRF building blocks – examples

• General D-LLRF board:

modular!

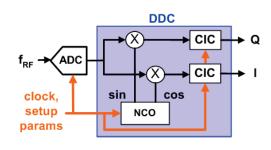
FPGA: Field-programmable gate array DSP: Digital Signal Processor



• DDC (Digital Down Converter)

• Digital version of the *I-Q* demodulator

CIC: cascaded integrator-comb (a special low-pass filter)



21

8th Sept, 2014

CAS Prague - EJ: RF Systems I

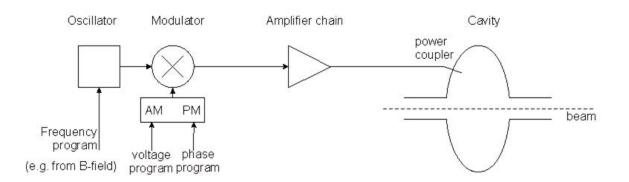
RF system & control loops

e.g.: ... for a synchrotron: Cavity control loops Beam control loops

Minimal RF system (of a synchrotron)

Low-level RF

High-Power RF

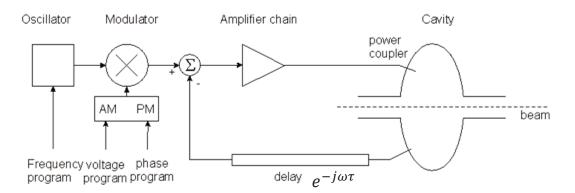


- The frequency has to be controlled to follow the magnetic field such that the beam remains in the centre of the vacuum chamber.
- The voltage has to be controlled to allow for capture at injection, a correct bucket area during acceleration, matching before ejection; phase may have to be controlled for transition crossing and for synchronisation before ejection.

8th Sept, 2014

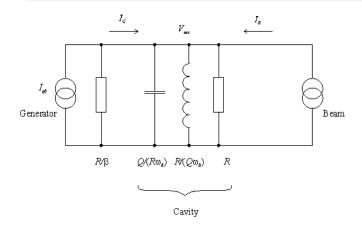
CAS Prague - EJ: RF Systems I

Fast RF Feed-back loop



- Compares actual RF voltage and phase with desired and corrects.
- Rapidity limited by total group delay (path lengths) (some 100 ns).
- Unstable if loop gain = 1 with total phase shift 180 ° design requires to stay away from this point (stability margin)
- The group delay limits the gain bandwidth product.
- Works also to keep voltage at zero for strong beam loading, i.e. it reduces the beam impedance.

Fast feedback loop at work



• Gap voltage is stabilised!

8th Sept, 2014

 Impedance seen by the beam is reduced by the loop gain!

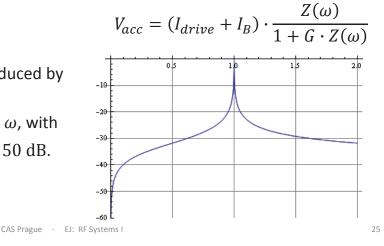
Plot on the right: $\frac{1+\beta}{R} \left| \frac{Z(\omega)}{1+G \cdot Z(\omega)} \right|$ vs. ω , with the loop gain varying from 0 dB to 50 dB.

Without feedback, $V_{acc} = (I_{G0} + I_B) \cdot Z(\omega)$, where

$$Z(\omega) = \frac{R/(1+\beta)}{1+jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

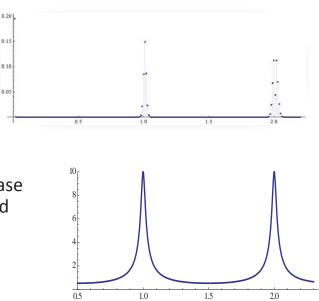
Detect the gap voltage, feed it back to I_{G0} such that $I_{G0} = I_{drive} - G \cdot V_{acc}$, where G is the total loop gain (pick-up, cable, amplifier chain ...)

Result:

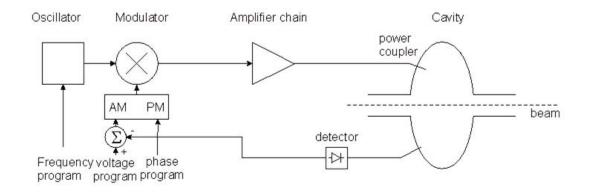


1-turn delay feed-back loop

- The speed of the "fast RF feedback" is limited by the group delay this is typically a significant fraction of the revolution period.
- How to lower the impedance over many harmonics of the revolution frequency?
- Remember: the beam spectrum is limited to relatively narrow bands around the multiples of the revolution frequency!
- Only in these narrow bands the loop gain must be high!
- Install a comb filter! ... and extend the group delay to exactly 1 turn – in this case the loop will have the desired effect and remain stable!



Field amplitude control loop (AVC)



• Compares the detected cavity voltage to the voltage program. The error signal serves to correct the amplitude

8th Sept, 2014

CAS Prague - EJ: RF Systems I

Tuning loop timing Tuning controller "mismatch" Oscillator Modulator Amplifier chain Clavity ÷ detector Tuner directional coupler _ _ _ _ _ _ _ AM ΡM beam Frequency voltage phase program program program

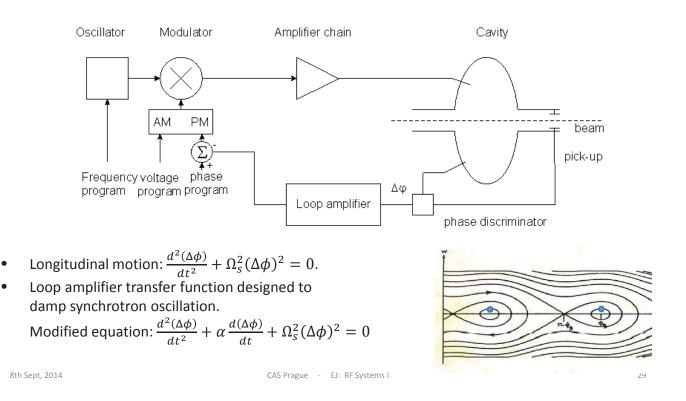
- Tunes the resonance frequency of the cavity f_r to minimize the mismatch of the PA.
- In the presence of beam loading, the optimum f_r may be $f_r \neq f$.
- In an ion ring accelerator, the tuning range might be > octave!
- For fixed *f* systems, tuners are needed to compensate for slow drifts.
- Examples for tuners:

•

- controlled power supply driving ferrite bias (varying μ),
 - stepping motor driven plunger,
- motorized variable capacitor, ...

27

Beam phase loop

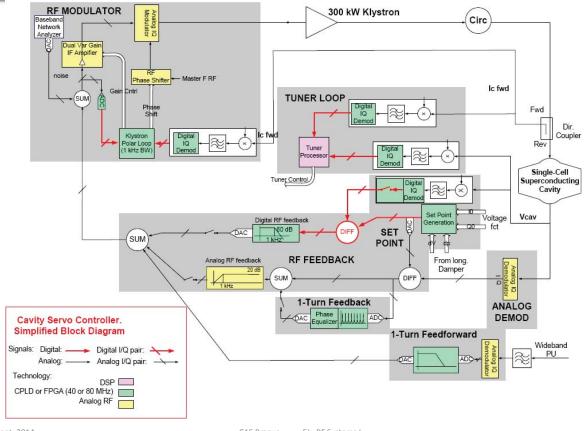


Other loops

- Radial loop:
 - Detect average radial position of the beam,
 - Compare to a programmed radial position,
 - Error signal controls the frequency.
- Synchronisation loop (e.g. before ejection):
 - 1st step: Synchronize *f* to an external frequency (will also act on radial position!).
 - 2nd step: phase loop brings bunches to correct position.

• ...

A real implementation: LHC LLRF



8th Sept, 2014

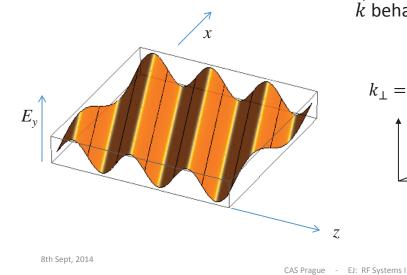
CAS Prague - EJ: RF Systems I

Fields in a waveguide

Homogeneous plane wave

 $\vec{E} \propto \vec{u}_y \cos(\omega t - \vec{k} \cdot \vec{r})$ $\vec{B} \propto \vec{u}_x \cos(\omega t - \vec{k} \cdot \vec{r})$

$$\vec{k} \cdot \vec{r} = \frac{\omega}{c} (z \cos \varphi + x \sin \varphi)$$

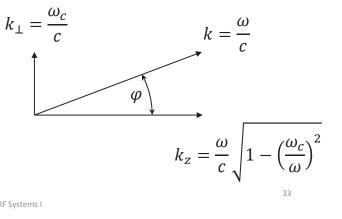


Wave vector
$$\vec{k}$$
:

the direction of \vec{k} is the direction of propagation, the length of \vec{k} is the phase shift per

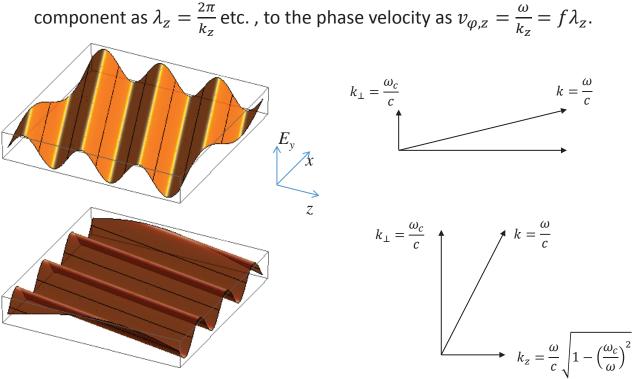
unit length. \vec{k} is the phase shift per

 \vec{k} behaves like a vector.

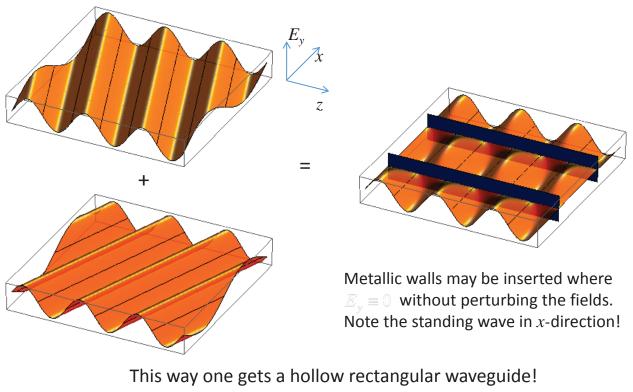


Wave length, phase velocity

• The components of \vec{k} are related to the wavelength in the direction of that



Superposition of 2 homogeneous plane waves

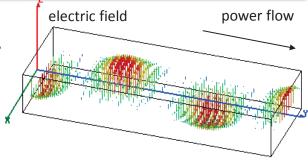


8th Sept, 2014

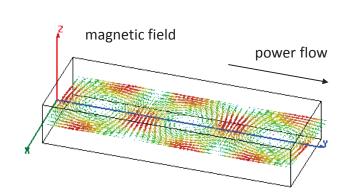
CAS Prague - EJ: RF Systems I

Rectangular waveguide

Fundamental (TE₁₀ or H₁₀) mode in a standard rectangular waveguide. E.g. forward wave



power flow: $\frac{1}{2} \operatorname{Re} \left\{ \iint \vec{E} \times \vec{H}^* dA \right\}$



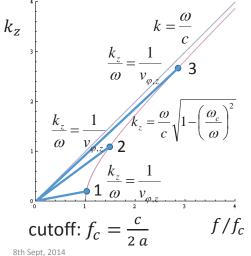
35

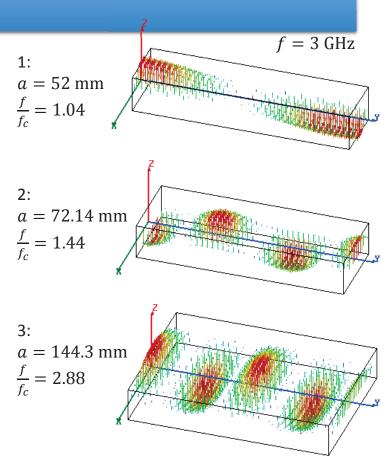
Waveguide dispersion

What happens with different f = 3 GHz1: waveguide dimensions (different a = 52 mmwidth a)? $\frac{f}{f_c} = 1.04$ The "guided wavelength" λ_g varies from ∞ at f_c to λ at very high frequencies. 2: a = 72.14 mm $\frac{f}{f_c} = 1.44$ k_z 3: $k_z = \frac{\omega}{\omega}$ a = 144.3 mm<u>s</u> 2 $\frac{f}{f_c} = 2.88$ f/f_c cutoff: $f_c = \frac{c}{2a}$ 8th Sept, 2014 CAS Prague - EJ: RF Systems I

Phase velocity $v_{\varphi,z}$

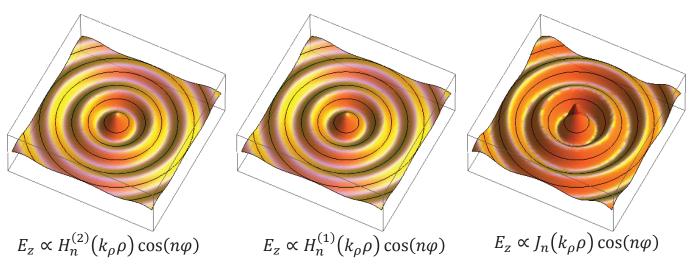
The phase velocity is the speed with which the crest or a zero-crossing travels in z-direction. Note in the animations on the right that, at constant f, it is $v_{\varphi,z} \propto \lambda_g$. Note that at $f = f_c$, $v_{\varphi,z} = \infty$! With $f \to \infty$, $v_{\omega,z} \to c!$





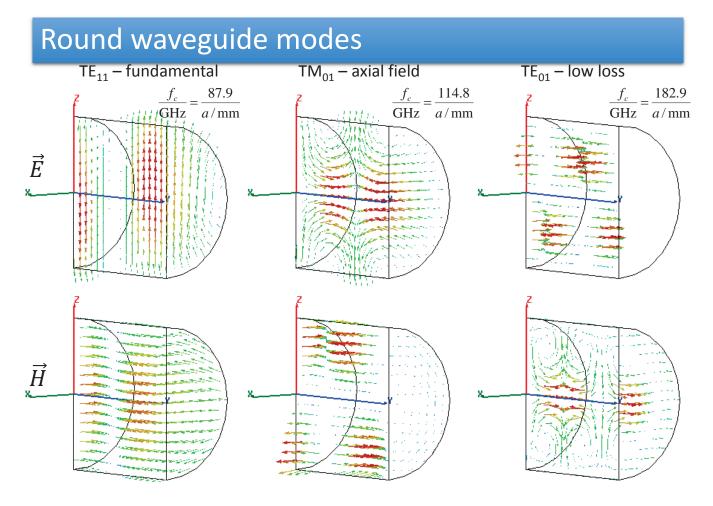
Radial waves

- Also radial waves may be interpreted as superpositions of plane waves.
- The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.



8th Sept, 2014

CAS Prague - EJ: RF Systems I

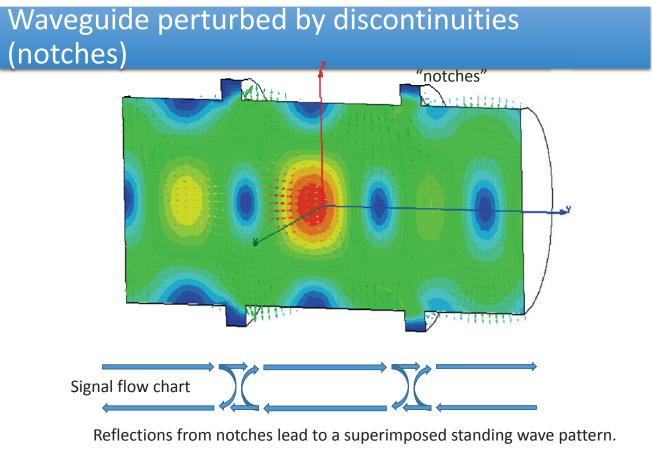


From waveguide to cavity

8th Sept, 2014

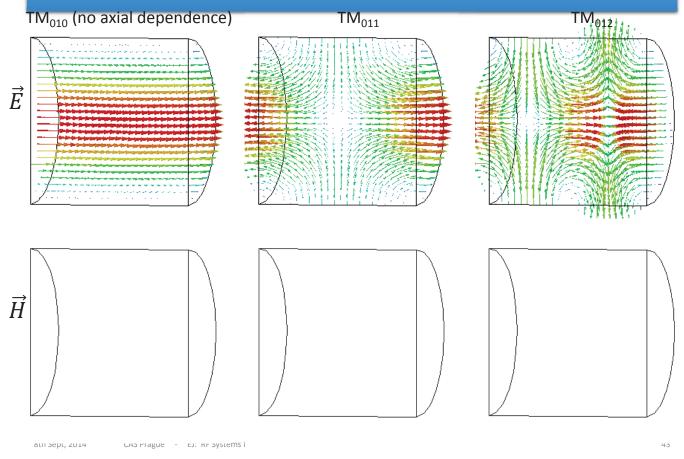
CAS Prague - EJ: RF Systems I

41

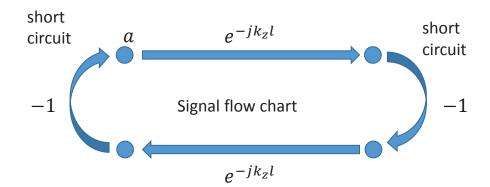


"Trapped mode"

Short-circuited waveguide



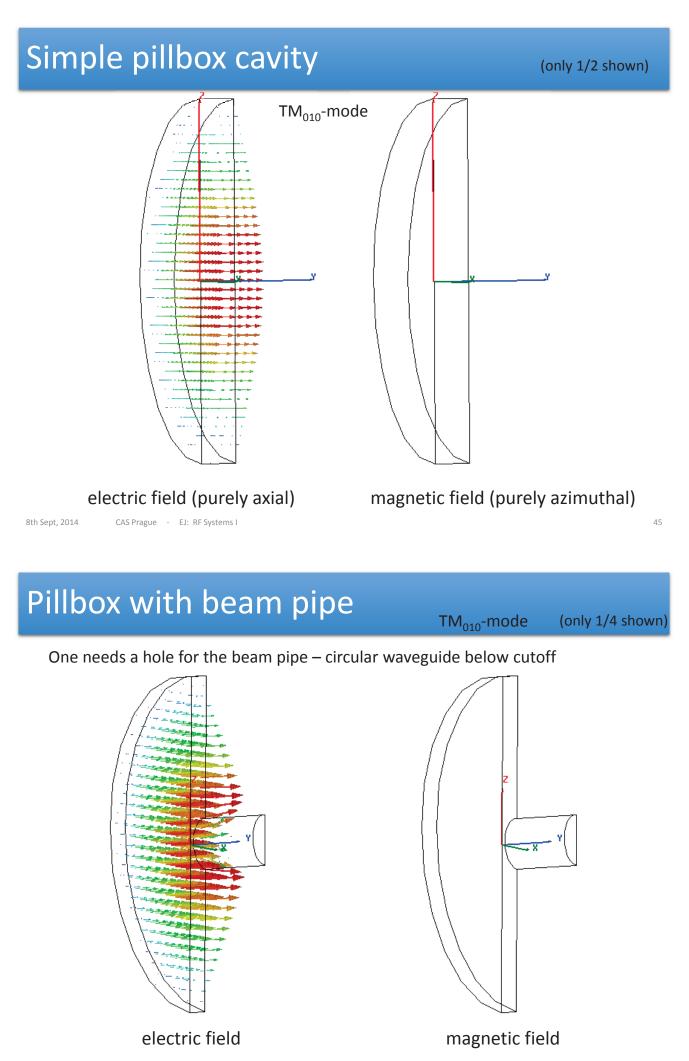
Single waveguide mode between two shorts



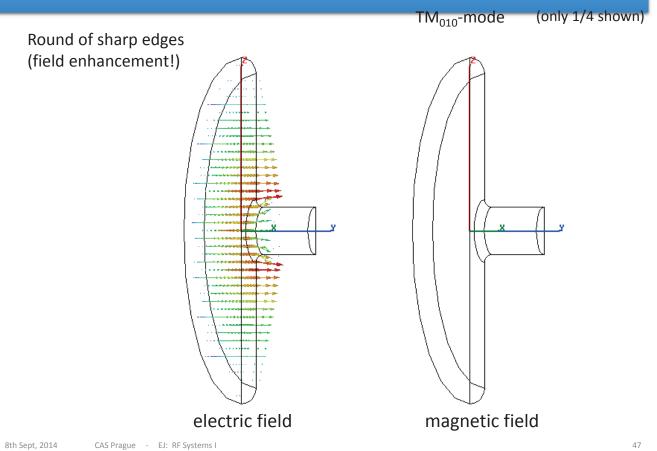
Eigenvalue equation for field amplitude *a*: $a = a e^{-jk_z 2l}$

Non-vanishing solutions exist for $2k_z l = 2 \pi m$.

With
$$k_z = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$$
, this becomes $f_0^2 = f_c^2 + \left(c \frac{m}{2l}\right)^2$.



A more practical pillbox cavity



Some real "pillbox" cavities

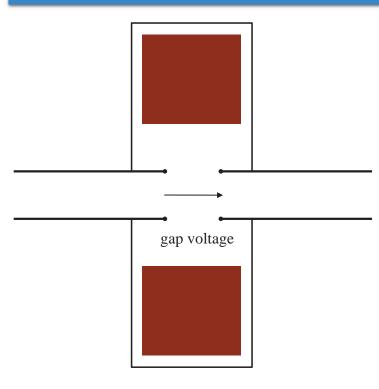
Accelerating gap

8th Sept, 2014

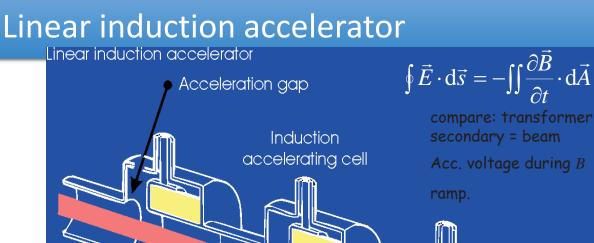
CAS Prague - EJ: RF Systems I

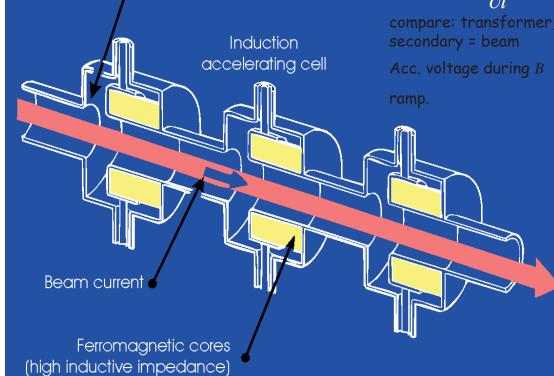
49

Accelerating Gap



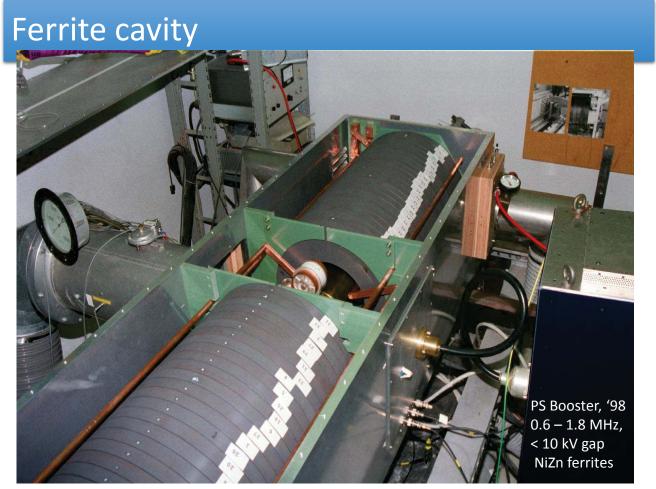
- We want a voltage across the gap!
- It cannot be DC, since we want the beam tube on ground potential.
- Use $\oint \vec{E} \, d\vec{s} = -\iint \frac{d\vec{B}}{dt} d\vec{A}$
- The "shield" imposes a
 - upper limit of the voltage pulse duration or - equivalently -
 - a lower limit to the usable frequency.
- The limit can be extended with a material which acts as "open circuit"!
- Materials typically used:
 - ferrites (depending on *f*-range)
 - magnetic alloys (MA) like Metglas®, Finemet®,
 - Vitrovac®...
- resonantly driven with RF (ferrite loaded cavities) – or with pulses (induction cell).





8th Sept, 2014

CAS Prague - EJ: RF Systems I



CAS Prague - EJ: RF Systems I

Gap of PS cavity (prototype)

8th Sept, 2014

CAS Prague - EJ: RF Systems I

53

End of RF Systems I