Measuring the ¹⁴C Content in Liquid Scintillators

Timo Enqvist, University of Oulu, Finland

Russian Academy of Sciences University of Oulu, Finland University of Jyväskylä, Finland

Introduction

- ► Measurement of ¹⁴C/¹²C ratio of several liquid scintillator samples
 - currently the lowest concentration: $^{14}\text{C}/^{12}\text{C} \sim 2 \times 10^{-18}$
 - aim to observe $R < 10^{-18}$
- ▶ If calculated from the $^{14}\mathrm{C}$ half life (\sim 5700 a) and the age of oil/gas sources,
 - the ratio $^{14}\text{C}/^{12}\text{C}$ should be $\sim 10^{-21} 10^{-22}$
 - ► contamination from local environment (U, Th, K, ...)
- Measurements in two laboratories
 - Baksan Underground Laboratory, Russia, at 4900 mwe
 - Pyhäsalmi Mine (CallioLab), Finland, at 4000 mwe
 - ▶ ~similar method, ~similar shielding
- Schedule
 - ► Baksan measurements already started (first preliminary results)
 - ► Pyhäsalmi starting still this year

Motivation

- Detector development
 - low-background liquid scintillator detector
- ▶ The decay energy of 14 C is small (Q_{β} =156 keV)
 - usually below the threshold
- ► If the ¹⁴C concentration too large ⇒ pulses may pile-up
- ▶ In JUNO the upper limit is: $^{14}\text{C}/^{12}\text{C} \sim 10^{-17}$
 - ▶ JUNO (Jiangmen Underground Neutrino Observatory) is a 20 kton LS detector under construction in China for ν mass hierarcy measurements
- ► LAB (Linear Alkyl Benzene) is currently the favoured liquid scintillator in large LS detectors
 - ► SNO+ (1 kton) in Canada, JUNO (20 kton in China)
 - ▶ ¹⁴C concentration of LAB not measured before

Earlier measurements for ¹⁴C/¹²C

¹⁴ C/ ¹² C (×10 ⁻¹⁸)	Liquid Scintillator	Experiment	[Ref]
(1.94 ± 0.09)	PC+PPO	Borexino CTF	[1]
(9.1±0.4)	PXE+p-Tp+	Borexino CTF	[2]
(3.98±0.94)	PC-Dodecane+PPO	KamLAND	[3]
(12.6±0.4)	PXE+p-Tp+	Dedicated setup	[4]

- [1] G. Alimonti et al., Physics Letters B 422 (1998) 349
- [2] H.O. Back et al., Nuclear Instrum. Methdos A 585 (2008) 48
- [3] G. Keefer, arXiv:1102.3786
- [4] C. Buck et al., Instrum. and Experim. Techniques 55 (2012) 34

¹⁴C background in Borexino

Baksan - The LAB (Russian)

- Composition
 - $ightharpoonup C_{17.73}H_{29.46}$ $C_{16}H_{26}$ (0.125), $C_{17}H_{28}$ (0.293), $C_{18}H_{30}$ (0.315), $C_{19}H_{32}$ (0.267)
- ► Density 0.856 g/cm³
- ► Light yield ~8000 photons/MeV (@ ~400 nm)
- ▶ PPO 2 g/ℓ

Baksan – The detector system

Baksan - Calibration curve

Baksan - Data analysis, preliminary (part of the data only)

Baksan - Conclusions

- Measurements started in Baksan Underground Laboratory
 - ▶ data analysis of 295.2 hours (12.3 days) resulted in the value of $^{14}\text{C}/^{12}\text{C} = (2.48 \pm 0.82) \times 10^{-17}$
 - close to the requirement by JUNO
- First measurement with a small sample of LS confirmed a possibility of ¹⁴C-concentration determination using such a small dedicated setup
 - Dedicated low-background hall at the depth of 4900 mwe
- Background
 - quite high, probably from radon (contact with air during the purification of the liquid)
 - method developed to purify radon
- ► Measurements of ¹⁴C/¹²C ratio starting in Pyhäsalmi Mine