Initial state of the HIC: thermalization and isotropization

Yan Zhu

Particle Physics Day, 30 Oct. 2015, Helsinki

Where are we at?

• Soft physics of HIC described by relativistic hydrodynamics

$$\partial_{\mu}T^{\mu\nu} = 0$$

• Gradient expansion around local thermal equilibrium

$$T^{\mu\nu} = T^{\mu\nu}_{\text{Thermal equilibrium}} - \eta(\epsilon)\sigma^{\mu\nu} - \zeta(\epsilon)\{g^{\mu\nu} + u^{\mu}u^{\nu}\}(\nabla \cdot u) + \dots$$

Where are we at?

- Strong anisotropy $P_L/P_T \ll 1$, sign of large corrections
- At early times *pre-equilibrium* evolution
- Hydro simulations start at intialization time τ_i

Where are we at?

- If prethermal evolution converges smoothly to hydro, independence of unphysical τ_i
- Explicit example: Strong coupling $\mathcal{N}=4$ SYM Chesler, Yaffe PRL 106 (2011) 021601; van der Schee et al. PRL 111 (2013) 22, 222302, arXiv:1507.08195

This has proven to be challenging in QCD, even at weak coupling

Bottom-up thermalization at weak coupling

Color Glass Condensate: Initial condition overoccupied
 McLerran, Venugopalan PRD49 (1994) 2233-2241, PRD49 (1994) 3352-3355; Gelis et. al
 Int.J.Mod.Phys. E16 (2007) 2595-2637, Ann.Rev.Nucl.Part.Sci. 60 (2010) 463-489

$$f(Q_s) \sim 1/\alpha_s, \qquad Q_s \sim 2 \text{GeV}$$

• Expansion makes system underoccupied before thermalizing

Baier et al Phys. Lett. B
502 (2001) 51-58; Kurkela, Moore JHEP 1111 (2011) 120 $\,$

$$f(Q_s) \ll 1$$

Bottom-up thermalization at weak coupling

- Degrees of freedom:
 - $f \gg 1$: Classical Yang-Mills theory (CYM)
 - $f \ll 1/\alpha_s$: (Semi-)classical particles, Eff. Kinetic Theory (EKT)
- Transmutation of fields to particles: Field-particle duality
 Son, Mueller PLB582 (2004) 279-287; Jeon PRC72 (2005) 014907; Mathieu et al EPJ. C74 (2014)
 2873; Kurkela, Moore PRD89 (2014) 7, 074036

$$1 \ll f \ll 1/\alpha_s$$

Strategy at weak coupling

Strategy: Switch from CYM to EKT at τ_{EKT} ,

 $1 \ll f \ll 1/\alpha_s$

From EKT to hydro at τ_i ,

 $P_L/P_T \sim 1$

Effective kinetic theory of Arnold, Moore, Yaffe

JHEP 0301 (2003) 030

• Soft and collinear divergences lead to nontrivial matrix elements

soft: screening, Hard-loop; collinear: LPM, ladder resum

- No free parameters; LO accurate in the $\alpha_s \to 0$, $\alpha_s f \to 0$ limit.
- Used for LO transport coefficients in QCD, jet energy loss
 Arnold et al. JHEP 0305 (2003) 051; Moore, York PRD79 (2009) 054011; Ghiglieri, Teaney
 1502.03730; Kurkela, Wiedemann PLB740 (2015) 172-178; Iancu, Wu 1506.07871
- Now also available in NLO $\mathcal{O}(\sqrt{\alpha_s})$

- Initial condition $(f \sim 1/\alpha_s)$ from classical field theory calculation Lappi PLB703 (2011) 325-330
- In the classical limit ($\alpha_s \to 0, \alpha_s f$ fixed), no thermalization
- At small values of couplings, clear Bottom-Up behaviour
- Features become less defined as α_s grows

$$\alpha_s = 0.03$$

• Kinetic theory converges to hydro smoothly and automatically

$$\alpha_s = 0.03$$

- Kinetic theory converges to hydro smoothly and automatically
- Hydro prediction fixed by perturbative η/s

- For realistic couplings, hydrodynamics reached around $\lesssim 1 \text{fm/c}$.
- Hydro seems to give a good description even when $P_L/P_T \sim 1/5$

Where are we going?

- Combination of classical Yang-Mills simulations and effective kinetic theory allows to follow the time evolution from highly occupied initial condition to thermal equilibrium.
- Weak coupling thermalization extrapolated to realistic couplings shows agreement with hydro around

$$\tau_i \sim 1 fm/c$$

• Unified description of soft and hard physics: hydro, jets, etc.