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Where are we at?

Lorentz contracted nuclei Pre—thermal plasma Locally thermalised plasma
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@ Soft physics of HIC described by relativistic hydrodynamics
0,T" =0

e Gradient expansion around local thermal equilibrium

™" =T —n(e)a" — ¢(e){g" + v u’}(V -u)+ ...

Thermal equilibrium



Where are we at?
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e Strong anisotropy Pr/Pr < 1, sign of large corrections
o At early times pre-equilibrium evolution

o Hydro simulations start at intialization time 7;
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Where are we at?
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+1

|
|
[
]
0 / T Time: T

o If prethermal evolution converges smoothly to hydro,
independence of unphysical 7;

e Explicit example: Strong coupling N' =4 SYM
Chesler, Yaffe PRL 106 (2011) 021601; van der Schee et al. PRL 111 (2013) 22, 222302,
arXiv:1507.08195

This has proven to be challenging in QCD, even at weak coupling
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Bottom-up thermalization at weak coupling
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Occupancy: f

e Color Glass Condensate: Initial condition overoccupied

McLerran, Venugopalan PRD49 (1994) 2233-2241 , PRD49 (1994) 3352-3355 ; Gelis et. al
Int.J.Mod.Phys. E16 (2007) 2595-2637 , Ann.Rev.Nucl.Part.Sci. 60 (2010) 463-489

f(Qs) ~1/a, Qs ~ 2GeV

o Expansion makes system underoccupied before thermalizing
Baier et al Phys.Lett. B502 (2001) 51-58; Kurkela, Moore JHEP 1111 (2011) 120

fQs) <1
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Bottom-up thermalization at weak coupling
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Occupancy: f
@ Degrees of freedom:

o f>1: Classical Yang-Mills theory (CYM)
o f < 1/ay: (Semi-)classical particles, Eff. Kinetic Theory (EKT)

e Transmutation of fields to particles: Field-particle duality
Son, Mueller PLB582 (2004) 279-287; Jeon PRC72 (2005) 014907; Mathieu et al EPJ. C74 (2014)
2873 ; Kurkela, Moore PRD89 (2014) 7, 074036

< f<l/as



Strategy at weak coupling
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Strategy: Switch from CYM to EKT at tgx, 1< f<1/as

From EKT to hydro at 7, Pr/Pr~1
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Effective kinetic theory of Arnold, Moore, Yaffe
JHEP 0301 (2003) 030

df
— = —C2<—>2[f] C1<—>2[f]

Eﬁ

Soft and collinear divergences lead to nontrivial matrix elements

soft: screening, Hard-loop; collinear: LPM, ladder resum
o

<~ (T | 71T

No free parameters; LO accurate in the oy — 0, ag f — 0 limit.

Used for LO transport coefficients in QCD, jet energy loss
Arnold et al. JHEP 0305 (2003) 051; Moore, York PRD79 (2009) 054011; Ghiglieri, Teaney
1502.03730; Kurkela, Wiedemann PLB740 (2015) 172-178; Iancu, Wu 1506.07871

e Now also available in NLO O(\/as) Ghiglieri 1509.07773
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Route to equﬂibrium in EKT Kurkela, YZ, PRL in press
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Initial condition (f ~ 1/as) from classical field theory calculation
Lappi PLB703 (2011) 325-330

In the classical limit (a5 — 0, asf fixed), no thermalization
At small values of couplings, clear Bottom-Up behaviour

Features become less defined as o grows



Smooth approach to hydrodynamics — xurkels, vz, pRL in press
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e Kinetic theory converges to hydro smoothly and automatically

9/11



Smooth approach to hydrodynamics — xurkels, vz, pRL in press

as = 0.03
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o Kinetic theory converges to hydro smoothly and automatically

e Hydro prediction fixed by perturbative 1/s

Arnold et al. JHEP 0305 (2003) 051
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Smooth approach to hydrodynamics — xurkels, vz, pRL in press
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e For realistic couplings, hydrodynamics reached around < 1fm/c.

e Hydro seems to give a good description even when Pp/Pp ~ 1/5
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Where are we going?

e Combination of classical Yang-Mills simulations and effective
kinetic theory allows to follow the time evolution from highly
occupied initial condition to thermal equilibrium.

@ Weak coupling thermalization extrapolated to realistic couplings
shows agreement with hydro around

7i ~ 1fm/c

@ Unified description of soft and hard physics: hydro, jets, etc.



