Status of TOTEM @ LHC

K. Österberg,

Department of Physics, University of Helsinki \& Helsinki Institute of Physics

UNIVERSITY OF HELSINKI

on behalf of TOTEM collaboration
 Particle Physics Day 30.10.2015

- Physics menu \& experiment

- Latest physics results
- 2015 data taking
- RP upgrades

Total pp cross-section

Forward particle production

Elastic pp scattering

Diffraction: soft and hard

Main soft processes @ LHC

Also studies of hard
 process with CMS

Elastic \& diffractive scattering:
Pomeron (\approx colourless gluon pair/ladder) exchange

Roman Pots - Si μ strip sensors: elastic \& diffractive protons (proton trigger)

Consolidation \& upgrade: RP relocation, DAQ upgrade, new RPs, timing \& Si sensors

Published run 1 results

Total, elastic, inelastic pp cross-section at $7 \& 8 \mathrm{TeV}$
Elastic pp |t|-differential cross-section over wide-range at $7 \& 8 \mathrm{TeV}$
\checkmark Forward $\mathrm{dN}_{\text {charged }} / \mathrm{d} \eta$ at $7 \& 8 \mathrm{TeV}$ (covering $3.8 \leq|\eta| \leq 7.0$)

- Soft double diffraction

Differential cross-Section $\mathrm{d} \sigma / \mathrm{d}|\mathrm{t}|$

Relative deviation of $\mathrm{d} \sigma / \mathrm{d}|\mathrm{t}|$ from exponential

Pure constant exponential form (ae $\left.{ }^{-b|t|}\right)$ excluded $>7 \sigma$ significance.
Low- $|t|$ data set ($\beta^{*}=1 \mathrm{~km}, 2012$) to study Coulomb-hadronic interference:
\checkmark Sensitivity to |t|-dependence of phase of hadronic amplitude
\checkmark Measurement of $\rho(\sim$ phase at $t=0)$

Elastic Coulomb-hadronic interference studies

Variable exponential slope with central or peripheral hadronic phase compatible with data \Rightarrow both centrality \& peripherality of elastic collisions possible !

Impact parameters for central \& peripheral phases
differential cross-section, $\boldsymbol{\beta}^{*}=90 \mathrm{~m}$:

- data points with statistical unc. full systematic uncertainty band syst. unc. without normalisation
- data points with statistical unc. full systematic uncertainty band /, syst. unc. without normalisation
- KL, constant ——KL, peripheral

$\rho=0.12 \pm 0.03 @ 8$ TeV (first direct ρ measurement at LHC)
$\sigma_{\text {tot }}=102.9 \pm 2.3 \mathrm{mb}$ @ 8 TeV (first $\sigma_{\text {tot }}$ taking Coulomb-hadronic interference into account at LHC)
$\checkmark \beta^{*}=90 \mathrm{~m}$ RP alignment run: low pileup ($\mu \sim 0.1$) with few bunches \& RPs @ 5 σ
+ total, elastic and inelastic cross-section \& soft diffraction
$\checkmark \beta^{*}=90 \mathrm{~m}$ common CMS-TOTEM physics runs:
low pileup ($\mu \sim 0.1$) with upto 700 bunches \& RPs @ 10
+ exclusive low mass resonance production + hard single \& central diffraction trigger exchange \& offline data merging

Integrated Luminosity

LHC delivered : 0.74/pb
CMS recorded : 0.68/pb
Totem recorded : 0.4/pb
Effective luminosity
Totem Trigger \& CMS data : 0.55/pb

CMS: Fill 4509 Luminosity

(Exclusive) central diffraction

, exchange of colour singlets with vacuum quantum numbers \Rightarrow selection rules for system X: JPC $=0^{++}, 2^{++}, \ldots$
, with double-arm proton detection

$$
\beta^{*}=90 \mathrm{~m}: \text { all } M_{x}, t>0.04
$$

, Comparison of prediction from forward to central system:
$M(p p)=? M($ central $), \quad p_{T, z}(p p)=? p_{T, z}$ (central), vertex $(p p)=$? vertex (central)
, prediction of rapidity gaps from proton x's : $\Delta \eta_{1,2}=-\ln \xi_{1,2}$
Examples ($0.4 \mathrm{pb}^{-1}$ reach):

- Exclusive low mass resonance and glueball studies (see next slide)
- Exclusive charmonium production: ~ O(few 100 events)
. (Non-exclusive) central diffractive jets ($\mathrm{p}^{\top}{ }_{\text {jet }}>30 / 40 \mathrm{GeV}$): $\times 100$ statistics (2012)
- Missing mass \& momentum signals (high mass): x 100 statistics (2012)
. Low mass exclusive central diffractive jets ($\mathrm{p}^{\top}{ }_{\text {jet }}>40 \mathrm{GeV}$): $\sim \mathrm{O}(10$ events $)$

Low mass resonance \& glueball studies

CD@LHC: $x \sim 10^{-3}-10^{-4}$ gluons \Rightarrow pure gluon pair $\Rightarrow M_{x} \sim 1-4 \mathrm{GeV}$ Candidates for 0^{++}glueball: $\mathrm{f}_{0}(1500)$ or $\mathrm{f}_{0}(1710)$; lattice QCD favours $\mathrm{f}_{0}(1710)$
Decays and branching ratios of $f_{0}(1710)$ poorly explored (unlike $f_{0}(1500)$)
\rightarrow Goal: characterize $\mathrm{f}_{0}(1710)$ and compare with known $\mathrm{f}_{0}(1500)$
CMS+TOTEM advantages:
\checkmark Good particle ID \& mass resolution ($\sigma(\mathrm{M}) \sim 30 \mathrm{MeV}$) using CMS tracker
\checkmark RP protons assure exclusivity ($\mathrm{p}_{\mathrm{T}, \mathrm{RP}} \sim \mathrm{p}_{\mathrm{T}, \text { tracker }}$)
CMS+TOTEM data from 2012: ($\mathcal{L}=3 \mathrm{nb}^{-1}$ of double arm RP trigger) show sensitivity to $\mathrm{f}_{0}(1710) \rightarrow \rho^{0} \rho^{0} \rightarrow 4 \pi^{ \pm}$(channel not yet reported in PDG)

Dedicated "TOTEM0" trigger: double arm RP \& T2 Veto \& at least 1 track in CMS tracker

$\beta^{*}=90 \mathrm{~m}$ common CMS-TOTEM physics runs:
100 M TOTEMO triggers in $\sim 0.4 \mathrm{pb}^{-1} \Rightarrow \times 500-750$ statistics (2012)
\Rightarrow should allow full decay characterization

$\beta^{*}=90 \mathrm{~m}$ physics runs

Very high statistics $\beta^{*}=90 \mathrm{~m}$ data at 13 TeV :
$\sim 3 \cdot 10^{9}$ elastic events \Rightarrow access higher $|t|$-values

Common CMS-TOTEM data taking:
8 - 10 kHz @ CMS HLT

Vertex reconstruction by time measurement

Pileup problem:
High luminosity \rightarrow multiple events in 1 bunch collision !

- CMS tracker can separate multiple vertices longitudinally
- leading proton tracks have angles in μ rad range \rightarrow insufficient vertex precision
- for double-arm events (CD) reconstruct vertex from time-of-flight difference

Position of Collision $\sim \Delta \boldsymbol{t}_{\text {Collision\#1,Stopwatch\#1 }}-\Delta \boldsymbol{t}_{\text {Collision\#1,Stopwatch\#2 }}$

Roman Pot upgrades

Iow β^{*} (< 1 m), high lumi, standard runs, $M_{X}>250 \mathrm{GeV}$

葠	
тотnases	

CMS-TOTEM Precision Proton Spectrometer Technical Design Report

CMS-TOTEM Precision Proton Spectrometer (CT-PPS)

Quartz sensors for Timing \& pixel sensors for tracking in horizontal RPs
high β^{*} ($19 \mathrm{~m}, 90 \mathrm{~m},>1 \mathrm{~km}$), low - medium lumi, special runs, all \mathbf{M}_{X}

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment

Thin diamond sensors in vertical RPs

High luminosity RP insertions

Final goal: Establish insertions for physics in regular fills from 2016

Experience from 2012:

- Collision debris showers from IP \Rightarrow beam dump due to BLMs
- Impedance heating combined with outgassing

Sector 5-6

Technical Improvements during LS1

- New ferrite material \& ferrite bake-out at $1000^{\circ} \mathrm{C} \Rightarrow$ less outgassing
- RF shields \& cylindrical geometry for horizontal RPs \Rightarrow impedance reduction - TCL6 to intercept showers from RPs July: Beam-based alignment/loss maps at ~ $30 \sigma_{\text {beam,hor }}$ \& successful RP insertions in 50 ns intensity ramp-up (up to $\mathrm{L} \approx 1.3 \cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) Aug - Oct: RPs closer ($\sim 25 \sigma_{\text {beam,hor }}$), final TCL con-figuration \& successful RP insertions in 25 ns intensity ramp-up so far (up to $L \approx 4 \cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Main conclusion:

Aluminium bar installed in TS2

* Linearity of BLM response with lumi, proving debris-hypothesis for losses
* Extrapolation to $L \approx 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ indicates no problem with BLM threshold for RPs

Aim for $\sim 20 \sigma_{\text {beam,hor }}$ (goal: $\sim 15 \sigma_{\text {beam,hor }}$) RP insertion in 2016 if all 2015 insertions succesful.

CT-PPS detectors

Tracking: 3D silicon sensors

- PSI46dig ROC, with same readout Phase I CMS pixel upgrade
- 6 detector planes per station
- $10 \mu \mathrm{~m}$ (position) \& 1-2 $\mu \mathrm{rad}$ (angle)

Timing baseline: Quartic detector - $20\left(4 \times 5\right.$) quartz bars, $3 \times 3 \mathrm{~mm}^{2}$, SiPM for light detection.

- 2 modules/RP unit
- In beam tests: $\sigma(\mathrm{t})=30 \mathrm{ps} /$ module
($\sim 20 \mathrm{ps} / \mathrm{RP}$ unit)
- Currently modules tested in RPs with MIPs

To be completed \& installed during 2016

Diamond timing detectors

currently 2 completed planes being tested inside RPs with MIPs total 12 planes (each with 4 diamonds) to be completed \& installed spring 2016

Summary

Many interesting physics results published using Run 1 data More Run 1 physics results being finalized

High luminosity RP insertions progressing successfully !
2015 data taking:

- LHCf run with very low pileup for dN/dn
- $\beta^{*}=90 \mathrm{~m}$ run: $\sim 0.4 \mathrm{pb}^{-1}$ with CMS for exclusive low mass resonance production, hard single \& central diffraction + dedicated sample for total cross-section \& soft diffraction stay tuned for results...

2016 plans:

- Completing \& installing diamond timing sensors for 2016 runs
- Dedicated run at $\beta^{*}=90 \mathrm{~m}$ with timing sensors with $\mu \sim 0.5$
- Completing \& installing CT-PPS detectors \Rightarrow high lumi data taking

Backup

T1 telescope

- Reinstalled \& commissioned.
- Fully operational.
- Tracking performance \& efficiency (at least) as in Run I

Performance plots from LHCf run ($\mu \sim 0.003$) without CMS B field

T2 telescope

 commissioned.TOTEM T2 Telescope

- Similar efficiency \& tracking performance as in Run I
- 3 out of 4 half-arms operational (missing half-arm $\leq 1 \%$ effect on measurements)

Primary/secondary separation

identical method as in Eur. ZImpact
Phys. J. C 74 (2014) 3053

Roman Pot consolidation \& upgrade

 11 Nov 1\checkmark Relocate RPs to 203m \& 214m ("RP210", improve lever arm)
\checkmark RPs @ 214 m rotated by 8° (improve multitrack capability) new cylindrical horizontal RP @ 216 m for timing (to improve proton right-left correlation)
\checkmark RF-shield added to all current horizontal RPs (reduce impedance)

Beam-Based RP Alignment

Standard Procedure for LHC Collimators

A primary collimator cuts a sharp edge into the beam, symmetrical to the centre

The top RP approaches the beam until it touches the edge

The last $10 \mu \mathrm{~m}$ step produces a spike in a Beam Loss Monitor downstream of the RP

When both top and bottom pots are touching the beam edge:
. they are at the same number of sigmas from the beam centre as the collimator
. the beam centre is exactly in the middle between top and bottom pot
\rightarrow Alignment of the RP windows relative to the beam ($\sim 20 \mu \mathrm{~m}$)

Proton transport \& reconstruction

$\left(x^{*}, y^{*}\right): \quad$ vertex position
($\theta_{x}{ }^{*}, \theta_{y}{ }^{*}$): emission angle: $\quad t \approx-p^{2}\left(\theta_{x}{ }^{* 2}+\theta_{y}{ }^{* 2}\right)$
$\xi=\Delta \mathrm{p} / \mathrm{p}$: momentum loss (elastic case: $\xi=0$)

Product of all lattice element matrices

$$
\begin{array}{lll}
\hline x_{R P}=L_{x} \Theta_{x}^{*}+v_{x} x^{*}+D_{x} \xi & \begin{array}{l}
\mathrm{L}_{x}, \mathrm{~L}_{y}: \\
\mathrm{v}_{\mathrm{x}}, \\
\mathrm{v}_{\mathrm{y}}:
\end{array} & \begin{array}{l}
\text { effective lengths (sensitivity to scattering angle) } \\
\text { magnifications (sensitivity to vertex position) }
\end{array} \\
\mathrm{D}_{\mathrm{x}}=L_{y} \Theta_{y}^{*}+v_{y} y^{*} & & \text { dispersion (sensitivity to momentum loss); } \mathrm{D}_{\mathrm{y}} \sim 0
\end{array}
$$

Reconstruction of proton kinematics $=$ inversion of transport equation Transport matrix elements depend on $\xi \rightarrow$ non-linear problem (except in elastic case!) Excellent optics understanding needed.

Exclusive χ_{c} at $\beta^{*}=90 \mathrm{~m}$

SuperChic/Durham predictions $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$:

	$\mathrm{J} / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \gamma$	$2\left(\pi^{+} \pi^{-}\right)$	$3\left(\pi^{+} \pi^{-}\right)$	$\pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$
$\chi_{\mathrm{c} 0}:$	264 pb	7.6 nb	4.1 nb	6.0 nb
$\chi_{\mathrm{c} 1}:$	166 pb	61 pb	46 pb	45 pb
$\chi_{\mathrm{c} 2}:$	53 pb	49 pb	38 pb	40 pb

χ_{c} selection identical to glueball except $\Gamma \chi « \sigma(M)$.
In $0.4 \mathrm{pb}^{-1}$, expect \geq few hundred $\chi_{\mathrm{c} 0}$ in all-hadronic decay modes.
Sofar exclusive $\chi_{c 0}, \chi_{c 1}$ and $\chi_{c 2}$ only seen in $J / \psi \gamma$ mode by LHCb and CDF (without proton tag).

Possibilities for first azimuthal angular correlation (ϕ) measurement between leading proton for exclusive $\chi_{c 0}$

SD processes at $\beta^{*}=90 \mathrm{~m}$

Single diffractive processes: study rapidity gap survival probability Triggered using CMS lepton \& jet triggers Visible σ estimate at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ (both proton + central object)

CMS PAS FSQ-14-001, TOTEM-NOTE-2014-002

- J/ ψ production (POMPYT): $\mu^{+} \mu^{-}$

$$
3.05<\mathrm{M}_{\mu \mu}<3.15 \mathrm{GeV}
$$

$0.4 \mathrm{pb}^{-1}: 120 \pm 4$ events
. W production (POMWIG): $\mu^{ \pm} / \mathrm{e}^{ \pm}$ ($\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$), $60<\mathrm{M}_{\mathrm{T}}<110 \mathrm{GeV}$
$0.4 \mathrm{pb}^{-1}: 14 \pm 1$ events
. SD jet production: $\mathrm{p}_{\mathrm{T}, \mathrm{jet}}>40 \mathrm{GeV}$
$0.4 \mathrm{pb}^{-1}$: O(10k) events

Background removal demonstrated on common CMS+TOTEM $\beta^{*}=90 \mathrm{~m}$ data at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ (SD dijets)

