Higgs-inflaton coupling from reheating and the metastable Universe

Marco Zatta

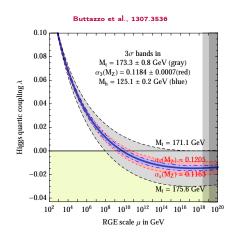
University of Helsinki

Particle Physics Day 30.10.15

C. Gross, O. Lebedev, MZ 1506.05106

Outline

Higgs potential in the SM and EW vacuum metastability


Going beyond the SM: Higgs-inflaton coupling

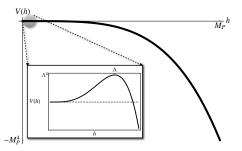
Higgs-inflaton coupling from reheating

Conclusions

Running of the higgs self-coupling λ

Assuming no new physics enter until $M_{\rm Pl}=2.4\times10^{18}{\rm GeV}$, we can extrapolate the behaviour of the SM to very high energy

For λ we have


$$\frac{\mathrm{d}\lambda}{\mathrm{d}\ln\mu} \propto a\lambda^2 - by_t^4 \\ \propto \alpha m_H^4 - \beta m_t^4$$

 λ turns negative at $\Lambda \sim 10^{10} {
m GeV!}$

Metastability of the EW vacuum and Higgs evolution

This is how the Higgs potential looks like (for large values of h)

$$V_{\rm eff} \simeq \lambda(h)h^4/4$$

Two problems:

- ▶ Huge fine tuning to put the Higgs field in the false vacuum.
- Fluctuations of the Higgs field are proportional to the Hubble scale H during inflation. If $H>\Lambda$, it is likely to end up in the true vacuum.

Extending the SM: modify Higgs' dynamics during inflation

Lebedev&Westphal, 1210.6987

In this talk we assume large field inflation, in particular $m^2\phi^2/2$:

Goal

Make the Higgs potential convex so that the Higgs field evolves to zero during inflation

How-to

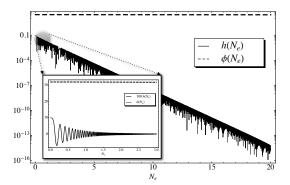
Introduce the renormalizable coupling

$$\frac{1}{4}\lambda_{h\phi}h^2\phi^2 \longrightarrow m_h^2 = \lambda_{h\phi}\phi_0^2/2$$

that can induce an effective mass term for h above the Hubble scale

Constraints

- lacktriangle No large radiative corrections to ϕ potential
- ► Sizable effect to the Higgs evolution


$$10^{-10} < \lambda_{h\phi}/2 < 10^{-6}$$

Extending the SM: system evolution during inflation

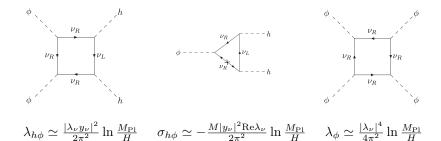
$$\ddot{h} + 3H\dot{h} + \partial V/\partial h = 0$$

Two stages

- ▶ Initially $3H^2M_{\rm Pl}^2=(\dot{h}^2+m_h^2h^2)/2\to h\sim(\cos m_h t)/m_h t$
- After a few Hubble times $3H^2M_{\rm Pl}^2=m^2\phi^2/2\rightarrow |h(t)|\sim e^{-3Ht/2}|h(0)|$

Can we infer the size of $\lambda_{h\phi}$ from reheating? Common feature of reheating models

- ► Energy density needs to be transferred to SM particles
- ► This requires a coupling (perhaps indirect) inflaton-SM


Renormalizability requires the introduction of the coupling $\lambda_{h\phi}h^2\phi^2$

$$V \supset \lambda_{h\phi} h^2 \phi^2 / 4 + \sigma_{h\phi} h^2 \phi / 2 + \lambda_{\phi} \phi^4 / 4$$

 $\lambda_{h\phi}$ runs with the renormalization scale!

Inflaton to RH neutrinos

$$-\Delta \mathcal{L} = \lambda_{\nu} \phi \nu_R \nu_R / 2 + y_{\nu} h \bar{L}_L \nu_R / \sqrt{2} + M \nu_R \nu_R / 2 + \text{h.c.}$$

- lacktriangle $\lambda_{\phi}\phi^4$ unimportant with respect to $m^2\phi^2\longrightarrow\lambda_{
 u}<10^{-3}$
- lacktriangle Seesaw and constraints on the mass of active neutrinos $\longrightarrow y_{
 u} < 0.6$

$$0 < \lambda_{h\phi} < 2 \times 10^{-7}$$

Conclusions

- ightharpoonup A small $\phi-h$ coupling can explain why the universe ended in the false vacuum after inflation
- \blacktriangleright The coupling $\phi-h$ is required for the renormalizability of realistic reheating models
- ► The induced coupling can be of the right size to affect the Higgs dynamics
- Next: understand the dynamics of reheating and preheating in more detail

Thank you