

Inflationary constraints on Dark Matter properties

Tommi Tenkanen

in collaboration with

K. Enqvist, K. Kainulainen, S. Nurmi, K. Tuominen and V. Vaskonen

University of Helsinki and Helsinki Institute of Physics

Talk based on arXiv:1407.0659, 1506.04048, 1511.xxxxx

Particle Physics Day 30.10.2015

E-mail: tommi.tenkanen@helsinki.fi

What do we study, i.e. how to constrain the unconstrainable (by colliders)?

- ➤ Our focus is on testing the Standard Model extensions through a broad range of their cosmological imprints.
- We want to find new ways to test SM extensions weakly coupled to SM.
- In particular, we study dark matter production and phase transitions (baryogenesis).

Prelude: What have we found?

- ► The key new ingredient: the consistent inclusion of inflationary initial conditions for the typical scalar sector encountered in extensions of SM.
- We have found a novel interplay between inflationary dynamics and dark matter properties.
- This places stringent constraints on viable mass scales and coupling values in SM extensions.

The Model

▶ The scalar sector of the model is specified by the potential

$$\textit{V}(\Phi,\textit{s}) = \textit{m}_{\textrm{h}}^2 \Phi^\dagger \Phi + \lambda_{\textrm{h}} (\Phi^\dagger \Phi)^2 + \frac{1}{2} \textit{m}_{\textrm{s}}^2 \textit{s}^2 + \frac{\lambda_{\textrm{s}}}{4} \textit{s}^4 + \frac{\lambda_{\textrm{sh}}}{2} \Phi^\dagger \Phi \textit{s}^2$$

- ► Here Φ and s are, respectively, the usual Standard Model Higgs doublet and a real singlet scalar.
- ▶ The coupling between Φ and s acts as a portal between the Standard Model and an unknown Dark Sector (the so-called Higgs portal). We take $\lambda_{sh} \lesssim 10^{-7}$.

Field dynamics during Cosmic Inflation

- ► The scalar fields will typically acquire fluctuations proportional to the inflationary scale, $h, s \simeq H_* \lesssim 10^{14}$ GeV.
- ► When do the fields relax down to their minima? What happens to the energy stored in the fields?
- It is possible to produce the observed dark matter abundance via particle production from a background field!

A (quantum) marble in a bowl.

▶ In this figure $H_* \simeq 10^{10}$ GeV and $m_{\rm s} = 20$ MeV.

▶ In this figure $H_* \simeq 10^{10}$ GeV and $m_{\rm s} = 20$ MeV.

▶ In this figure $H_* \simeq 10^{10}$ GeV and $m_{\rm s} = 20$ MeV.

However, too much entropy in the produced particles!

Extensions of the simplest model

- ▶ What if the dark sector contained more fields?
- ▶ Consider the interaction $gs\bar{\psi}\psi$ between singlet scalar and singlet fermion.
- ► The primordial scalar field can now decay into fermions instead of decaying into quanta of its own field.

Preliminary results

► Red: Excluded by entropy production, Yellow (Green): Decay to fermions in quartic (quadratic) potential, Blue: Decay to scalars.

Preliminary results

► Contours from thickest to thinnest: 1, 10⁻⁶, 10⁻⁹ of the observed DM abundance.

Conclusions

- ▶ It seems that a great majority of the observed DM abundance has to be produced by other mechanisms.
- The formation of primordial scalar fields however puts stringent constraints on model parameters.
- New physics even with tiny couplings to the SM can be constrained by carefully investigating their dynamics both during and after inflation (remember: $\lambda_{\rm sh} \lesssim 10^{-7}$).

Take-home message

Cosmic inflation can be used to constrain the high-energy regime of extensions of the Standard Model.