Higgs properties from the combined measurement

Jaana Heikkilä

30th of October 2015

What is a combined measurement?

- **NOT** a combination of separate measurements...
- Combine the data samples of ATLAS and CMS + perform a fit ⇒ A combined measurement

With great data comes...

great responsibility to treat uncertainties in the right way!

⇒ We include systematic uncertainties and correlations in the fit...

The standard model Higgs boson or something else?

- We found a Higgs boson, but what kind of Higgs boson is it?
- LHC Run 1 data allows to probe for
 - production modes ggH, VBF, WH, ZH, and ttH and
 - decay channels $\gamma\gamma$, ZZ \rightarrow 4 ℓ , WW \rightarrow 2 ℓ 2 ν , $\tau\tau$, bb, and $\mu\mu$.
- Signal strength μ_i^f = Higgs boson yields for a process $i \to H \to f$:

$$\mu_i^f \equiv \frac{\sigma_i}{\sigma_i^{\text{SM}}} \frac{\text{BR}^f}{\text{BR}_{\text{SM}}^f} = \mu_i \times \mu^f.$$

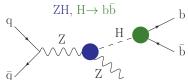
The standard model Higgs boson or something else?

- We found a Higgs boson, but what kind of Higgs boson is it?
- LHC Run 1 data allows to probe for
 - production modes ggH, VBF, WH, ZH, and ttH and
 - decay channels $\gamma\gamma$, ZZ $\rightarrow 4\ell$, WW $\rightarrow 2\ell2\nu$, $\tau\tau$, bb, and $\mu\mu$.
- Signal strength μ_i^f = Higgs boson yields for a process $i \to H \to f$:

$$\mu_i^f \equiv \frac{\sigma_i}{\sigma_i^{\text{SM}}} \frac{\text{BR}^f}{\text{BR}_{\text{SM}}^f} = \mu_i \times \mu^f.$$

 New physics could produce a SM-like signal strength → measure couplings from both production and decay!





Deviations from the SM expectation: the κ -framework

Parameterise the signal yield in terms of Higgs boson widths:

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_{\mathrm{H}}}.$$

• The coupling modifiers $\vec{\kappa}$ - potential deviation from the SM:

$$\sigma_j = \kappa_j^2 \cdot \sigma_j^{\mathrm{SM}} \text{ or } \Gamma^j = \kappa_j^2 \cdot \Gamma_{\mathrm{SM}}^j.$$

Deviations from the SM expectation: the κ -framework

Parameterise the signal yield in terms of Higgs boson widths:

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_{\mathrm{H}}}.$$

• The coupling modifiers $\vec{\kappa}$ - potential deviation from the SM:

$$\sigma_j = \kappa_j^2 \cdot \sigma_j^{\text{SM}} \text{ or } \Gamma^j = \kappa_j^2 \cdot \Gamma_{\text{SM}}^j.$$

• Individual κ_i correspond to LO degrees of freedom \rightarrow In SM, define effective coupling modifiers for ggH and H $\rightarrow \gamma \gamma$ as

$$\begin{split} \kappa_{\rm g}^2 &\sim 1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b} \\ \kappa_{\gamma}^2 &\sim 1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t} \end{split}$$

Deviations from the SM expectation: the κ -framework

Parameterise the signal yield in terms of Higgs boson widths:

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_{\mathrm{H}}}.$$

• The coupling modifiers $\vec{\kappa}$ - potential deviation from the SM:

$$\sigma_j = \kappa_j^2 \cdot \sigma_j^{\mathrm{SM}} \text{ or } \Gamma^j = \kappa_j^2 \cdot \Gamma_{\mathrm{SM}}^j.$$

• Individual κ_i correspond to LO degrees of freedom \rightarrow In SM, define effective coupling modifiers for ggH and H $\rightarrow \gamma \gamma$ as

$$\begin{split} \kappa_{\rm g}^{2} \sim 1.06 \cdot \kappa_{\rm t}^{2} + 0.01 \cdot \kappa_{\rm b}^{2} - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b} \\ \kappa_{\gamma}^{2} \sim 1.59 \cdot \kappa_{\rm W}^{2} + 0.07 \cdot \kappa_{\rm t}^{2} - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t} \end{split}$$

Necessary to make an assumption on Γ_{H} : a theory dependence → test for different hypotheses (SM, BSM)

The κ -framework and the total width of the Higgs boson

General form for the Higgs boson width is

$$\Gamma_{\rm H} = \Gamma_{\rm H}^{
m SM}(ec{\kappa}) + \Gamma_{
m H}^{
m BSM}$$

 The total width depends on the allowed couplings \rightarrow characterise the dependence with another modifier $\kappa_{\rm H}^2(\vec{\kappa})$:

$$\Gamma_{\rm H} = \frac{\kappa_{
m H}^2 \cdot \Gamma_{
m H}^{
m SM}}{\left(1 - {
m BR}_{
m BSM}\right)}, \ {
m where}$$

$$\begin{split} \kappa_{\rm H}^2(\vec{\kappa}) &\sim 0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 + 0.06 \cdot \kappa_{\tau}^2 \\ &+ 0.03 \cdot \kappa_{\rm Z}^2 + 0.03 \cdot \kappa_{\rm c}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{\rm Z\gamma}^2 \\ &+ 0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2 \end{split}$$

The κ -framework and the total width of the Higgs boson

General form for the Higgs boson width is

$$\Gamma_{\rm H} = \Gamma_{\rm H}^{
m SM}(\vec{\kappa}) + \Gamma_{\rm H}^{
m BSM}$$

 The total width depends on the allowed couplings \rightarrow characterise the dependence with another modifier $\kappa_{\rm H}^2(\vec{\kappa})$:

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2 \cdot \Gamma_{\rm H}^{\rm SM}}{\left(1 - {\rm BR_{\rm BSM}}\right)}, \ {\rm where} \ \label{eq:etaH}$$

$$\begin{split} \kappa_{\rm H}^2(\vec{\kappa}) &\sim 0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 + 0.06 \cdot \kappa_{\tau}^2 \\ &+ 0.03 \cdot \kappa_{\rm Z}^2 + 0.03 \cdot \kappa_{\rm c}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{\rm Z\gamma}^2 \\ &+ 0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2 \end{split}$$

• If only SM physics is allowed: $BR_{BSM} = 0$ \rightarrow SM width rescaled by $\kappa_{\rm H}^2$.

The κ -framework and the total width of the Higgs boson

• General form for the Higgs boson width is

$$\Gamma_{\rm H} = \Gamma_{\rm H}^{
m SM}(ec{\kappa}) + \Gamma_{
m H}^{
m BSM}$$

• The total width depends on the allowed couplings \rightarrow characterise the dependence with another modifier $\kappa_{\rm H}^2(\vec{\kappa})$:

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2 \cdot \Gamma_{\rm H}^{\rm SM}}{(1 - {\rm BR}_{\rm BSM})}, \ {
m where}$$

$$\begin{split} \kappa_{\rm H}^2(\vec{\kappa}) &\sim 0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 + 0.06 \cdot \kappa_{\tau}^2 \\ &+ 0.03 \cdot \kappa_{\rm Z}^2 + 0.03 \cdot \kappa_{\rm c}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{\rm Z\gamma}^2 \\ &+ 0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2 \end{split}$$

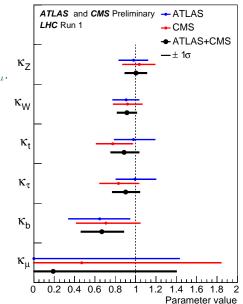
- If only SM physics is allowed: ${\rm BR_{BSM}}=0$ \rightarrow SM width rescaled by $\kappa_{\rm H}^2$.
- If we allow also BSM contributions, BR_{BSM} is not bounded \rightarrow introduce another assumption to bound $\kappa_H^2(\vec{\kappa})$.

Assuming only SM physics

- No BSM decays: $BR_{BSM} = 0$.
- No BSM in the loops:
- $ightarrow \kappa_{\sigma}^{2}(\kappa_{\mathrm{t}}, \kappa_{\mathrm{b}})$ and $\kappa_{\gamma}^{2}(\kappa_{\mathrm{W}}, \kappa_{\mathrm{t}})$
- \rightarrow measure $\kappa_{\rm W}$, $\kappa_{\rm Z}$, $\kappa_{\rm b}$, $\kappa_{\rm t}$, κ_{τ} , and κ_{μ} .

Assuming only SM physics

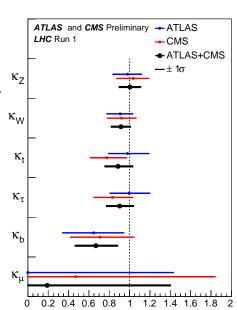
- No BSM decays: $\mathrm{BR}_{\mathrm{BSM}} = 0$.
- No BSM in the loops:
- $ightarrow \kappa_{\rm g}^{f 2}(\kappa_{
 m t},\kappa_{
 m b})$ and $\kappa_{\gamma}^{f 2}(\kappa_{
 m W},\kappa_{
 m t})$
- $\rightarrow \kappa_{\rm g}(\kappa_{\rm t}, \kappa_{\rm b})$ and $\kappa_{\gamma}(\kappa_{\rm W}, \kappa_{\rm t})$ \rightarrow measure $\kappa_{\rm W}, \kappa_{\rm Z}, \kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\tau}$, and κ_{μ} .



Assuming only SM physics

- No BSM decays: $\mathrm{BR}_{\mathrm{BSM}}=0.$
- No BSM in the loops:
- $ightarrow \kappa_{
 m g}^{f 2}(\kappa_{
 m t},\kappa_{
 m b})$ and $\kappa_{\gamma}^{f 2}(\kappa_{
 m W},\kappa_{
 m t})$
- \rightarrow measure $\kappa_{\rm W}$, $\kappa_{\rm Z}$, $\kappa_{\rm b}$, $\kappa_{\rm t}$, κ_{τ} , and κ_{μ} .

The p-value of the compatibility between the data and the SM predictions is 65%.



Allowing BSM physics

- To bound $\kappa_{\rm H}^2(\vec{\kappa})$, introduce two scenarios allowing BSM particles:
 - 1. only in loops, thus $\mathrm{BR}_{\mathrm{BSM}}=0$

Allowing BSM physics

- To bound $\kappa_{\rm H}^2(\vec{\kappa})$, introduce two scenarios allowing BSM particles:
 - 1. only in loops, thus $BR_{\rm BSM}=0$

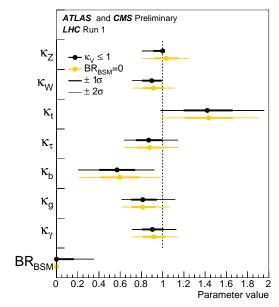
2. in loops and in decays, thus $\mathrm{BR}_{\mathrm{BSM}} \geq 0$ and $\kappa_W, \kappa_Z \leq 1$ (natural bound in wide range of BSM physics models!)

Allowing BSM physics

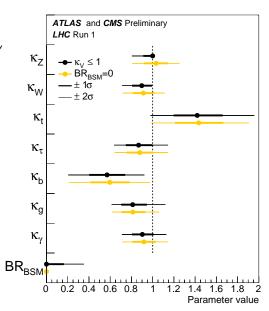
- To bound $\kappa_{\rm H}^2(\vec{\kappa})$, introduce two scenarios allowing BSM particles:
 - 1. only in loops, thus $BR_{BSM} = 0$

2. in loops and in decays, thus $BR_{BSM} \geq 0$ and $\kappa_W, \kappa_Z \leq 1$ (natural bound in wide range of BSM physics models!)

 \rightarrow Measure $\kappa_{\rm g}$ and κ_{γ} , $\kappa_{\rm W}$, $\kappa_{\rm Z}$, $\kappa_{\rm b}$, $\kappa_{\rm t}$, κ_{τ} , and in scenario 2 also BR_{BSM}.

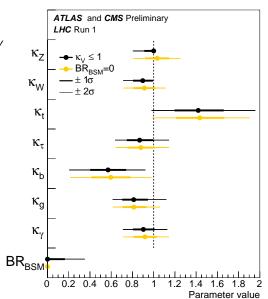


• From scenario 1: The p-value of the compatibility between the data and the SM predictions is 11%.



From scenario 1: The p-value of the compatibility between the data and the SM predictions is 11%.

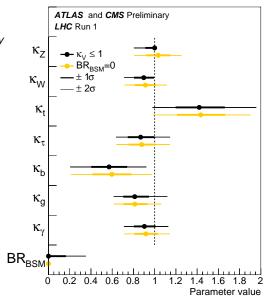
From scenario 2: $\mathrm{BR}_{\mathrm{BSM}} < 0.34$ at 95% CL.



From scenario 1: The p-value of the compatibility between the data and the SM predictions is 11%.

From scenario 2: $\mathrm{BR}_{\mathrm{BSM}} < 0.34$ at 95% CL.

Couplings are compatible with the SM within uncertainties of $\sim 10\%$ for bosons and $\sim 15\% - 30\%$ for t. b and τ .

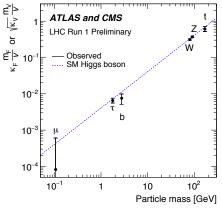


Conclusion

- The combined measurement is obtained by fitting the combined data samples.
- The κ -framework is used to measure couplings of the Higgs boson to SM particles, and requires an explicit modelling of the Higgs boson width.
- The explicit modelling of the width allows us to test for both SM and BSM physics.

Conclusion

- The combined measurement is obtained by fitting the combined data samples.
- The κ -framework is used to measure couplings of the Higgs boson to SM particles, and requires an explicit modelling of the Higgs boson width.
- The explicit modelling of the width allows us to test for both SM and BSM physics.



• We find couplings compatible with the SM within uncertainties of $\sim 10\%$ for bosons and $\sim 15\% - 30\%$ for the heavier fermions.

Further reading

- The ATLAS and CMS Collaborations: Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments http://journals.aps.org/prl/abstract/10.1103/ PhysRevLett.114.191803
- The ATLAS and CMS Collaborations: Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s}=7$ and 8 TeV https://cds.cern.ch/record/2053103
- Nicholas Wardle's presentation at LHC seminar on March 2015 https://indico.cern.ch/event/360243/
- Wouter Verkerke's presentation at LHC seminar on September 2015 https://indico.cern.ch/event/442438/

Backup

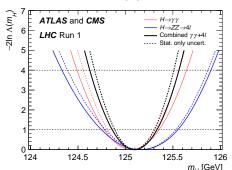
Our weapon: the profile likelihood ratio $\Lambda(\vec{\alpha})$

- We estimate parameter of interest $\vec{\alpha}$, and treat systematic uncertainties as nuisance parameters $\vec{\theta}$.
- Construct the profile likelihood ratio to estimate $\vec{\alpha}$:

$$\Lambda(\vec{\alpha}) = \frac{L(\vec{\alpha}, \hat{\vec{\theta}}(\vec{\alpha}))}{L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})}, \text{ and }$$

derive the 68.3% confidence level interval from

$$-2 \ln \Lambda(\vec{\alpha}) \leq 1$$
.



Jaana Heikkilä