



# Particle Physics with Cloud Computing

Tomasz Malkiewicz CSC





#### **Outline**

- Computational particle physics
- Where we are
  - HPC
  - Grid
- Where we are heading
  - Cloud
- Cloud computing in Finland
  - cPouta
    - Particle physics related projects
  - Ongoing/coming project





## Computational particle physics

- Methods and computing tools developed in and used by particle physics research
- Main branches
  - Lattice field theory (numerical computations)
  - Calculations of particle interaction or decay (computer algebra)
  - Event generators (stochastic methods)

#### Supercomputing: serial and parallel processing

- Serial computing
  - single processing unit (core) is used for solving a problem
  - single task performed at once
- Parallel computing
  - multiple cores are used for solving a problem
  - problem is split into smaller subtasks
  - multiple subtasks are performed simultaneously





## Data parallelism



- Data is distributed to processor cores
- Each core performs (nearly) identical tasks with different data
- Example: summing the elements of a 2D array

core 1: 
$$\sum = \square$$

core 2:  $\sum = \square$ 

core 3:  $\sum = \square$ 

- Each core sums it's part of the array
- The individual sums have to be combined in the end

## CSC

### Task parallelism

- Different cores perform different tasks with the same or different data
- Example: signal processing, four filters as separate tasks



- Data is processed as segments
- Core 2 obtains a segment after core 1 has processed it; core 1 starts to process a new segment
- When the first segment gets to core 4, all cores are busy



## Where we are

#### Finnish computing resources concentrated in Kajaani



## **Cray Dragonfly Topology**







All-to-all network between groups





2 dimensional all-to-all network in a group

Source:

**Robert Alverson**, Cray Hot Interconnects 2012 keynote

4 nodes connect to a single Aries

Optical uplinks to inter-group net

T.Malkiewicz @ Particle Phys. Day'15

#### Sisu rear view



#### Performance of numerical libraries







MKL the best choice on Sandy Bridge (On Cray, LibSci a good alternative)

## **Emerging technologies – CUDA6**





### **Emerging technologies – Xeon Phi**





#### **Use case 1: Solving quantum field theories**



#### Lattice simulations:

Model the quantum field on a discrete lattice and use computer simulations:

- Strong coupling (QCD, technicolor, etc)
- Phase transitions
- High temperature and/or density
- Non-linear physics (Real-time evolution:
- Heavy ions/Cosmology

Finland: long traditions, 1st high-T QCD simulation in 1981 (Kajantie, Montonen, Pietarinen)



School 2013

#### Use case 1 cont.: Why simulations are expensive

CSC

- 4-dimensions (in some cases 3)
- quantum
- fermions (quarks)

Fermions can be integrated out, but that makes the action non-local: fermion determinant

$$Z = \int dU \, d\Psi \, e^{-S_G(U) - \overline{\Psi} M(U)\Psi} = \int dU \, det [M(U)] e^{-S_G(U)}$$
$$= \int dU \, d\chi \, e^{-S_G(U) - \overline{\chi} M(U)^{-1}\chi}$$

last step: use commuting *pseudofermion* fields: det → inverse

Pseudofermions: normal complex numbers

Expensive part:  $M^{-1}(U) \chi$  - conjugate gradient

matrix size: [volume x 4 x 3]2

If volume 64<sup>4</sup>, matrix is [201 326 592]<sup>2</sup>

Source: **Kari Rummukainen**, CSC Autumn School 2013 30.10.2015

#### **Use case 1 cont.: Parallel paradigms**



- Pure MPI: 1 process/local volume
  - relatively simple
  - local volume can be small if communication is efficient & async
  - e.g. 34 local volume, 484 total volume, 65536 cores (BlueGene/Q)
- OpenMP (multithreaded) without MPI
  - Easiest, close to non-parallel code
  - Neeeds independent loop iterations "vectorized code"
  - Efficient only in shared memory only 10's of cores
- Mixed mode: MPI + within local volume OpenMP / thread pool
  - Potentially highest performance, because can use more cores/volume
  - Perf/core is usually not better than pure MPI
  - In sisu: 16 cores/node, 1-16 threads/MPI process
  - Blue Gene Q: 32-64 threads/node

#### **Use case 2: LENA simulations**





PMT support — inactive, r = 14 m

Steel Tank, ~30000 PMTs r = 14m, h = 100m → high demands on the optical transparency of the scintillator

Water Cherenkov Veto 1500 PMTs, Dr > 2m

Egg-Shaped Cavern about 10<sup>8</sup> m<sup>3</sup>

Overburden: 4000 mwe

**LENA** 

Neutrino
Astrophysics

#### SCIENTIFIC GOALS

Nucleon decay
Supernova neutrinos
Diffuse SN neutrinos
Geoneutrinos
Solar neutrinos
Atmosphericneutrinos
Neutrino properties by
reactors/accelerators
Indirectdark matter search

More information:

T.Malkiewicz @ Particle PRoster no. 66 on Poster session II by K. Loo

Source: **Kai Loo**, HPC Nuclear and Particle Physics งล์กลักสกิส CSC 2012



## Where we are heading

### **Cloud Service Models**





Software: End user applications,

Not only web applications.

Integrated also e.g. file system view, job submission.



**Platform**: Virtual Machine images with *preinstalled* software e.g. OS, DB, Hadoop, cluster tools, code development tools, science discipline tailored applications.



**Infrastructure**: Cloud user interface to launch Virtual Machines where the user can choose operating system and administrate it.

Compute resources: CPU, RAM

Storage: local disks or via network (NFS, http,...)

Network: internal, external

T.Malkiewicz @ Particle Phys. Day'15



## Cloud Computing in Finland

## cCloud running on Taito supercluster



#### Taito cluster:

two types of nodes, HPC and cloud

HPC node

HPC node

Cloud

Cloud node

Host OS: RHEL

Virtual machine

 Guest OS: Ubuntu Virtual machine

 Guest OS: Windows

30.10.2015

T.Malkiewicz @ Particle Phys. Day'15

#### **cPouta**



- Infrastructure as a Service (laaS)
  - Deploy your own virtual machines/storage/network
- OpenStack cloud middleware
  - To manage the virtual resources
- Allocated from Taito supercluster
  - Powerful CPUs, lots of memory, fast disk
- Simple to create and modify VMs
  - WWW, CLI & REST API interfaces



https://research.csc.fi/pouta-iaas-cloud

### **Specifications of the resources**



|          | Cores | Memory | Disk (root) | Disk (ephemeral) | Disk (total) | Memory/core | Billing Units/h |
|----------|-------|--------|-------------|------------------|--------------|-------------|-----------------|
| tiny     | 1     | 1 GB   | 10 GB       | 110 GB           | 120 GB       | 1           | 2               |
| mini     | 1     | 3,5 GB | 10 GB       | 110 GB           | 120 GB       | 3           | 2               |
| small    | 4     | 15 GB  | 10 GB       | 220 GB           | 230 GB       | 4           | 8               |
| medium   | 8     | 30 GB  | 10 GB       | 440 GB           | 450 GB       | 4           | 16              |
| large    | 12    | 45 GB  | 10 GB       | 660 GB           | 670 GB       | 4           | 24              |
| bigroot  | 16    | 60 GB  | 80 GB       | 500 GB           | 580 GB       | 4           | 32              |
| fullnode | 16    | 60 GB  | 10 GB       | 900 GB           | 910 GB       | 4           | 32              |

- VM configuration: flavor. Project has total quota.
- Server-class Xeon E5 (Sandy Bridge) CPUs
  - 2\*8 cores, 2.6GHz
- Connected with 40 Gbit Ethernet
- Block storage from DDN back-end
  - hard drive attached to a single VM

#### **Division of work**



#### laaS cloud expert



- Resources (compute, storage)
- Interfaces to access the system
- Supports usage of the cloud, but does not necessarily manage Virtual Machines (VM)
  - Does not know what is running on the VMs

#### **VM** admin

- Can connect the existing compute / storage resources through the private network solution
- Manages Virtual Machines
  - root permission for VMs
  - Installs and maintains
     Operating System and other software for VMs
  - Pays the software licenses





Launch

Cancel



## Ready to go

compenvs





## Euclid project - cPouta use case 1



- cPouta being tested now for the Euclid Science Data Center challenges
- The European wide consortium will have a common software environment
  - → virtual machine with administrator rights is a perfect match
- Storage capacity also essential
- The current resources for the project were applied by UH via standard CSC resource allocation process
- Later project is due to have dedicated hardware to be integrated to CSC 's cloud

#### CMS - cPouta use case 2



- Own CMS software stack
- HIP has been running a CMS Tier-2 site since 2008
- The virtualization decouples the CERN OS from the cloud host OS
- Allows to decommission the HIP owned Jade cluster hosted by CSC
- The Linux containers could be interesting to decrease the overhead of virtualized I/O
- Found challenges: The rapid development of OpenStack

# **CSC Finland – pioneer in Scientific Cloud Computing**



- Ongoing/coming projects
  - DO-29401 (10 k cores too early)
  - MS-4143
- Why to use CSC cloud services?
  - High-end compute HW, storage, networks
  - Based on open standards
  - Security is a high priority
  - Energy-efficient production
  - Specialist support & consulting
  - Services for all usage levels





## Backup



## **Getting started**



#### Academic use (OKM) free

- Apply for an account at CSC, then request Pouta access
  - https://research.csc.fi/pouta-application
  - Initial quota for testing & minor work
  - More quota can be applied for

#### Other use at cost

- Paid packages
  - Annual base package
  - Compute and storage quota options
- Send mail to contact@csc.fi for details

#### **cPouta Use Cases**



- Running scientific applications
  - Custom Operating System
    - Ubuntu, Debian, Scientific Linux, Windows Server 2012
  - Root/admin access needed for installation
- Building custom services
  - Web servers, file servers etc.
  - Software Defined Infrastructure (DevOps)
    - Rapidly deploying dev/test/prod environments
- Coursework