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HEP Research CentersHEP Research Centers

Research Research 
CenterCenter Accelerator (GeV)Accelerator (GeV) ExperimentExperiment PhysicsPhysics

SLAC, USA PEP-II, e- x e+ (9 x 3.1) BaBar B-Physics

F il b D0 UniversalFermilab, 
USA Tevatron, p x p (1000 x 1000)

D0 Universal

CDF Universal

BNL, USA RHIC, Heavy Ions
PHENIX Quark-Gluon-Plasma

STAR Quark-Gluon-Plasma

KEK, Japan KEK-B, e- x e+ (8 x 3.5) BELLE B-Physics

CERN, 
Switzerland LHC, p x p (7000 x 7000)

ATLAS Universal

CMS Universal

ALICE Quark-Gluon-PlasmaALICE Quark Gluon Plasma

LHCb B-Physics

DESY, HERA e+/- x p (27 5 x 920)

ZEUS Proton-Physics

H1 Proton-Physics

Germany HERA, e x p (27.5 x 920)
HERMES Spin-Physics

HERA-B B-Physics

GSI, 
Germany SIS 100/300, p, Heavy Ions

PANDA Quark-Physics

CBM Quark-Gluon-Plasma

Different experiments for Different experiments for 
different physics, but withdifferent physics, but with
common tracking problemscommon tracking problems
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CBM Quark Gluon Plasma



HEP Experiments: Collider and FixedHEP Experiments: Collider and Fixed--TargetTarget

Beam Beam TargetBeam

Inelastic collisions
107 – 109

Reconstructed tracks 
with pt > 25 GeV

Signal events

1010
1111

Signal events
102 – 10-2

High energy = high density + high rateHigh energy = high density + high rateHigh energy = high density + high rate High energy = high density + high rate 
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ATLAS (CERN)ATLAS (CERN) CBM (FAIR/GSI)CBM (FAIR/GSI)



Methods for Event ReconstructionMethods for Event Reconstruction

Track findingTrack finding Track fittingTrack fitting Kalman Kalman 
FilterFilter

1111 2222

TimeTime
consuming!!consuming!!

!!

FilterFilter

CombinatoricsCombinatorics
+ Precision+ Precision

S d ?S d ?

•• Global MethodsGlobal Methods
Vertex finding/fittingVertex finding/fitting

Kalman Kalman 
FilterFilter3333

= Speed ?= Speed ?

•• Global MethodsGlobal Methods
• all hits are treated equivalently
• typical methods:

•• Conformal MappingConformal Mapping
•• HistogrammingHistogramming
•• Hough TransformationHough TransformationHough TransformationHough Transformation

•• Local MethodsLocal Methods
• sequential selection of candidates
• typical methods:

•• Track followingTrack following

PID: Ring findingPID: Ring finding
CombinatoricsCombinatorics

4444

•• Kalman FilterKalman Filter

•• Neural NetworksNeural Networks
• combine local and global relations
• typical methods:

•• PerceptronPerceptron
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•• PerceptronPerceptron
•• Hopfield networkHopfield network
•• Cellular AutomatonCellular Automaton
•• Elastic NetElastic Net



Global Methods:Global Methods: Conformal Mapping + HistogrammingConformal Mapping + Histogramming

Global methods are especially suitable for fast tracking in projections
TriggersTriggers

Example: Collider experiment with a solenoid, where tracks are circular trajectories

Conformal Mapping:Conformal Mapping: Histogram:Histogram:Conformal Mapping:Conformal Mapping:
Transform circles into straight lines

u =  x/(x2+y2)
v = -y/(x2+y2)SimpleSimple

gg
Collect a histogram of azimuth angles φ
Find peaks in the histogram
Collect hits into tracks

FastFast

φφ

x

y

u

v

φ
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Useful implemented in hardware and for very simple event topologiesUseful implemented in hardware and for very simple event topologies



Global Methods:Global Methods: Hough TransformationHough Transformation

Measurement SpaceMeasurement Space Parameter SpaceParameter Space

y = a*x + by = a*x + b b = b = --x*a + yx*a + y

x

y

a

b
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Useful implemented in hardware and for simple event and trigger topologiesUseful implemented in hardware and for simple event and trigger topologies



Local Methods:Local Methods: Kalman Filter for Track FindingKalman Filter for Track Finding

One Processing Unit                                    Consecutively hit by hit One Processing Unit                                    Consecutively hit by hit 

Seeding PlanesSeeding Planes

DetectorDetector

DetectorDetector
Efficiency Efficiency 

??????
DetectorDetector
Efficiency Efficiency 

??????

OoopOoop
ss

07 February 2008, CERN07 February 2008, CERN Ivan Kisel, GSI/UniIvan Kisel, GSI/Uni--HeidelbergHeidelberg 77/32/32

Useful for final track fitting and for Monte Carlo analysis of an experimentUseful for final track fitting and for Monte Carlo analysis of an experiment



Neural Networks:Neural Networks: Cellular Automaton Cellular Automaton –– Game „Life“Game „Life“

M Gardner Scientific American 223 (October 1970) 120-123
Each cell has 8 neighboring cells, 4 adjacent orthogonally, 4 adjacent diagonally. The rules are: 
Survivals. Every counter with 2 or 3 neighboring counters survives for the next generation. 
Deaths. Each counter with 4 or more neighbors dies from overpopulation. Every counter with 1 neighbor or 

none dies from isolation

M. Gardner,  Scientific American, 223 (October 1970), 120 123

none dies from isolation. 
Births. Each empty cell adjacent to exactly 3 neighbors is a birth cell.
It is important to understand that all births and deaths occur simultaneously. TRACKING !TRACKING !

RECO
TRACK

GHOST
TRACK ?

NOISE !NOISE !

TRACK !TRACK !

TRACK
RECO

TRACK
RECO

TRACK
TRACK !TRACK !

no convergence !
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Neural Networks:Neural Networks: Cellular Automaton Cellular Automaton –– AnimationAnimation
2. Segments

1. Hits

1 2 3 4

3. Counters

5. Tracks

4. Track-candidates
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Useful for analysis of experiments with real dataUseful for analysis of experiments with real data



CompetitionCompetition CATS(CATS(CACA)/RANGER()/RANGER(KFKF)/TEMA()/TEMA(HTHT) (HERA) (HERA--B, DESY)B, DESY)

Tracking quality Tracking quality 
Tracking efficiency Tracking efficiency 
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Time consumption Time consumption 
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NNinelinel x 50 tracksx 50 tracks

The reconstruction package CATSCATS based on
the Cellular Automaton for track findingCellular Automaton for track finding andTi
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gg
the Kalman Filter for track fittingKalman Filter for track fitting

outperforms alternative packages
((SUSi, HOLMES, L2Sili, OSCAR, RANGER, SUSi, HOLMES, L2Sili, OSCAR, RANGER, TEMATEMA))

based on traditional methods
in efficiency accuracy and speed
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in efficiency, accuracy and speed

NNinelinel x 50 tracksx 50 tracks



Data Acquisition SystemData Acquisition System

DetectorDetector
101077 ev/sev/s

50 50 kBkB//evev
RURURURURURURURU

RURURURURURURURU
RURURURURURURURU

RURURURURURURURU

E tE t

100 100 evev//sliceslice
101077 ev/sev/s

SFn Δt MAPS STS RICH TRD ECALSFn ΔtSFn Δt SFn Δt SFn Δt

Event Event 
Builder Builder 
NetworkNetwork

N x MN x MSchedulerScheduler

5 M5 MBB//sliceslice Sub-FarmSub-Farm Sub-Farm Sub-Farm Sub-Farm

Farm 
Control System

SF
n

av
ai

la
bl

e

SFn Δt MAPS STS RICH TRD ECAL

PC FarmPC Farm101055 slsl/s/s

Sub FarmSub Farm Sub Farm Sub Farm Sub Farm
Sub-FarmSub-Farm Sub-Farm Sub-Farm Sub-Farm

Sub-FarmSub-Farm Sub-Farm Sub-Farm Sub-Farm
Sub-FarmSub-Farm Sub-Farm Sub-Farm Sub-Farm

Sub-FarmSub-Farm Sub-Farm Sub-Farm Sub-Farm~1000 ~1000 
PCsPCs
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PCsPCs



CBM:CBM: PC SubPC Sub--FarmFarm

Input Data Farm 

Scheduler

Control System
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SWP SWPSWPSWP SWP SWP SWPSWPSWP SWPSWP SWPSWPSWP SWPSWP SWP

HLT C++, Framework, GEANT 

L1 CPU C++, Framework, GEANT

ready   ⇒

started ⇒
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L1 FPGA C++, SystemC, SystemCrafter, VHDLfuture  ⇒



Cell Processor:Cell Processor: SupercomputerSupercomputer--onon--aa--Chip Chip 
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Cell Blade as SubCell Blade as Sub--FarmFarm

T ki d V t i U itT ki d V t i U it
SubSub--FarmFarm

Tracking and Vertexing UnitsTracking and Vertexing Units
FP

G
A

FP
G

A
FP

G
A

FP
G

A

PCPC PCPCPCPCPCPC PCPC

SubSub--Farm Farm 
Management UnitManagement Unit

SubSub--Farm Farm 
Decision/Selection UnitDecision/Selection Unit
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OnOn--line Data Reconstructionline Data Reconstruction

OnOn--line Selection (Trigger)line Selection (Trigger)

Sub-Farm

… Cell, Cell, Cell, Cell …… Cell, Cell, Cell, Cell …
… Cell, Cell, Cell, Cell …… Cell, Cell, Cell, Cell …
… Cell, Cell, Cell, Cell …… Cell, Cell, Cell, Cell …

1. Distribution of Data1. Distribution of Data 2. Track Finding2. Track Finding 3. Track Fit3. Track Fit

Kalman FilterKalman Filter
Intel, AMD and CellIntel, AMD and Cell

Cellular AutomatonCellular AutomatonSubSub--Farm DemonstratorFarm Demonstrator

DevelopmentDevelopment
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SIMDized Kalman Filter Track FitSIMDized Kalman Filter Track Fit
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The Kalman Filter                                                                                   1/3The Kalman Filter                                                                                   1/3

The Kalman filter is a recursive algorithm which estimates the state 
of a dynamic system from a series of incomplete and noisy measurements.

The filter was developed in papers by Swerling (1958), Kalman (1960), 
and Kalman and Bucy (1961).

The filter is named after 
Rudolf E. Kalman. 

An example of an application would be to provide accurate continuously-updated information about the 
position and velocity of an object given only a sequence of observations about its position, each of which 
includes some error. 

It is used in a wide range of engineering applications from radar to computer vision. 

A wide variety of Kalman filters have now been developed from Kalman's original formulation now called
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A wide variety of Kalman filters have now been developed, from Kalman s original formulation, now called 
the simplesimple Kalman filter, to extendedextended filter, the informationinformation filter and a variety of squaresquare--rootroot filters.



Example: Radar Applications                                                                2/3Example: Radar Applications                                                                2/3

In a radar application where one is interested in following a target information about the location speedIn a radar application, where one is interested in following a target, information about the location, speed, 
and acceleration of the target is measured at different moments in time with corruption by noise. 

State vectorState vector Covariance matrixCovariance matrixerror of x

r = { x, y, z, vr = { x, y, z, vxx, v, vyy, v, vzz } } 

σσ22
xx
σσ22

yy ……
σσ22

zz
σσ22

vxvx
σσ22

C =C =

…          …          σσ22
vyvy
σσ22

vzvzposition velocity

07 February 2008, CERN07 February 2008, CERN Ivan Kisel, GSI/UniIvan Kisel, GSI/Uni--HeidelbergHeidelberg 1818/32/32

December 21, 1968. The Apollo 8 spacecraft has just been sent on its way to the Moon.
003:46:31 Collins: Roger. At your convenience, would you please go P00 and Accept? We're going to update to your W-matrix.



The Kalman Filter Algorithm                                                                 3/3 The Kalman Filter Algorithm                                                                 3/3 
The Kalman filter is a recursiverecursive estimator – only the estimated state from the previous time step and the 
current measurement are needed to compute the estimate for the current state.

nn

mean value over nn measurements

previous estimation new measurement

n+1n+1

mean value over n+1n+1 measurementsmean value over n 1n 1 measurements

correctionweight

PredictionPrediction
oror

ExtrapolationExtrapolation

UpdateUpdate
oror

FilterFilter

The Kalman filter exploits the dynamics of the target, which govern its time evolution, to remove 
the effects of the noise and get a good estimate of the location of the target 
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• at the present time (filteringfiltering), 
• at a future time (predictionprediction), or 
• at a time in the past (interpolationinterpolation or smoothingsmoothing).



Kalman Filter for Track Fit                                                                     1/3Kalman Filter for Track Fit                                                                     1/3

detectorsmeasurements

ee--

(r C)(r C)(r, C)(r, C)

track parameters
and errors
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The Kalman Filter for Track Fit                                                              2/3The Kalman Filter for Track Fit                                                              2/3

arbitrary large errors

non-homogeneous 
magnetic field
as large map 

multiple scattering in 
material>>> 256 KB >>> 256 KB 

of Local Storeof Local Store

weight for update

small errors

not enough accuracy not enough accuracy 
i i l i ii i l i iin single precisionin single precision
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Modifications of the Fitting Algorithm                                                 3/3Modifications of the Fitting Algorithm                                                 3/3

• The initial track parameters are directly estimated from the input data. 
The propagation step is performed directly from measurement to measurement without intermediate steps• The propagation step is performed directly from measurement to measurement without intermediate steps. 

• Matrix multiplications have been replaced by direct operations on only non-trivial matrix elements.
• Most loops have been unrolled in order to provide additional instructions for interleaving.
• All branches have been eliminated from the algorithm to avoid branch misprediction penalty. 
• Calculations have been reordered for better use of the processors pipeline.
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Porting the Kalman Filter on Cell                                                          1/4Porting the Kalman Filter on Cell                                                          1/4

Use headers to overload +, Use headers to overload +, --, *, / operators , *, / operators ----> the source code is unchanged !> the source code is unchanged !

Data Types:Data Types:

•• Scalar doubleScalar double
S l flS l fl

c = a + bc = a + b
•• Scalar floatScalar float
•• PseudoPseudo--vector (array)vector (array)
•• Vector (4 float)Vector (4 float)

SSE2SSE2
Platform:Platform:

1.1. GSIGSI--LinuxLinux
2.2. Virtual machine:Virtual machine:

Red Hat (Fedora Core 4)Red Hat (Fedora Core 4)
Cell Simulator:Cell Simulator:

SSE2SSE2

Al iVAl iV

Platform:Platform:

Cell Simulator:Cell Simulator:
PPEPPE
SPESPE

3.3. Cell Blade Cell Blade 

AltiVecAltiVec

Specialized Specialized 
SIMDSIMD
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SPE Statistics                                                                                          2/4SPE Statistics                                                                                          2/4

f lf lTiming profile ! Timing profile ! 

No need to checkNo need to check
the assembler code ! the assembler code ! 
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Modifications of the Fitting Algorithm                                                 3/4Modifications of the Fitting Algorithm                                                 3/4
In

te
l P

4
In

te
l P

4
Ce

ll
Ce

ll
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Kalman Filter on Kalman Filter on Intel XeonIntel Xeon, , AMD OpteronAMD Opteron and and CellCell 4/44/4

Fit of a single track:Fit of a single track:

lxg1411

eh102

blade11bc4
2.12.1 1.61.6

Fit of thousands of tracks:Fit of thousands of tracks:
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Cell SPE is:     Cell SPE is:     1.51.5 times faster than Intel Xeontimes faster than Intel Xeon
and       and       22 times faster than AMD Opteron times faster than AMD Opteron 



CBM: Track Finding Challenge CBM: Track Finding Challenge 
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CBM (FAIR/GSI)CBM (FAIR/GSI)



Cellular Automaton Track Finder: PseudocodeCellular Automaton Track Finder: Pseudocode

11 Create trackletsCreate tracklets 22 Collect tracksCollect tracks
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Structure and DataStructure and Data

cbmroot/L1cbmroot/L1
• A standalone L1AlgoL1Algo module
• About 300 kB300 kB per central event //

L1Geometry L1Event
(L1Strips, L1Hits) L1Tracks

• About 300 kB300 kB per central event 

L1AlgoL1Algo

S iS iI tI t Strips:Strips:
float vStripValues[NStrips];  // strip coordinates (32b)
unsigned char vStripFlags [NStrips];  // strip iStation (6b) + used (1b) + used_by_dublets (1b)
Hits:Hits:
struct L1StsHit { 
unsigned short int f b; // front (16b) and back (16b) strip indices

Input:Input:

unsigned short int f, b;                  // front (16b) and back (16b) strip indices 
};
L1StsHitL1StsHit vHits[NHits]; 

unsigned short int vRecoHits [NRecoHits];       // hit index (16b)
unsigned char vRecoTracks [NRecoTracks];   // N hits on track (8b)

Output:Output:
g [ ]; // ( )

class L1Triplet{
unsigned short int w0;    // left hit (16b)
unsigned short int w1;    // first neighbour (16b) or middle hit (16b)
unsigned short int w2;    // N neighbours (16b) or right hit (16b)

i d h b0 // hi2 (5b) l l (3b)

Internal:Internal:
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unsigned char b0;    // chi2 (5b) + level (3b)
unsigned char b1;    // qp (8b)
unsigned char b2;    // qp error (8b)

}



Reconstructed EventReconstructed Event
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CA Track Finder EfficiencyCA Track Finder Efficiency

MBias eventsMBias events Central eventsCentral events

Standard geometry: 2M2P4SStandard geometry: 2M2P4S
MBias eventsMBias events Central eventsCentral events

Efficiency, %Efficiency, % Track categoryTrack category Efficiency, %Efficiency, %

98.0 Reference set (>1 GeV/c) 96.6

95.4 All set (>=4 hits, >100 MeV/c) 93.5

89.1 Extra set (<1 GeV/c) 85.9

0.4 Clone 0.4

1.6 Ghost 4.7

140 MC tracks/event found 633
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140 MC tracks/event found 633



Summary and ConclusionSummary and Conclusion

•• Precise fit using the Kalman filterPrecise fit using the Kalman filter
•• Track finding algorithms that can be parallelized (CA)Track finding algorithms that can be parallelized (CA)
•• Use of the SIMD architecture (4x)Use of the SIMD architecture (4x)
•• SingleSingle--precision floating point (speed and size)precision floating point (speed and size)
•• Limited data manipulationLimited data manipulation•• Limited data manipulationLimited data manipulation
•• MultiMulti--core CPUscore CPUs
•• Other hardware for large combinatorics (GPU, FPGA, ?)Other hardware for large combinatorics (GPU, FPGA, ?)
•• Tools for debugging (timing profile, …)Tools for debugging (timing profile, …)
•• Portable code (Intel, AMD, Cell, …)Portable code (Intel, AMD, Cell, …)

•• Efficient event reconstruction is very expensive Efficient event reconstruction is very expensive –– thousands of CPUs !thousands of CPUs !
•• Inefficient event reconstruction is even more expensiveInefficient event reconstruction is even more expensive εεtottot = (= ( εεphysphys ** εεdetdet ** εεelctrelctr ) *) * εεrecoreco !!!!!!Inefficient event reconstruction is even more expensive Inefficient event reconstruction is even more expensive εεtot tot  (  ( εεphysphys   εεdetdet   εεelctrelctr )  )  εεrecoreco !!!!!!
•• Reconstruction = Physics + Mathematics + Computers + Detectors + ElectronicsReconstruction = Physics + Mathematics + Computers + Detectors + Electronics
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