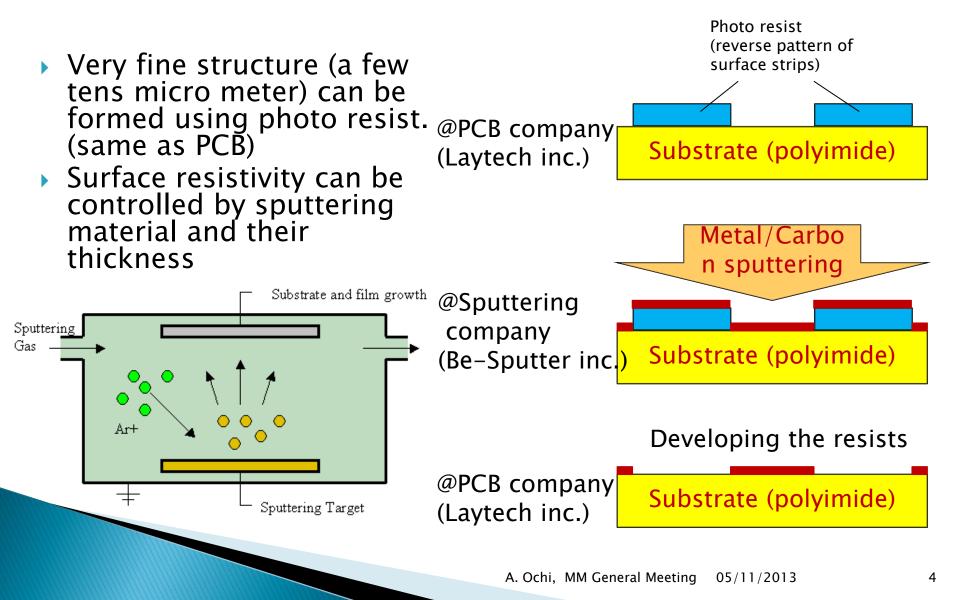

#### Resistive Strips Preparation – with carbon sputtering –

Atsuhiko Ochi, *Kobe University* 

05/11/2013 MM General meeting@ CERN

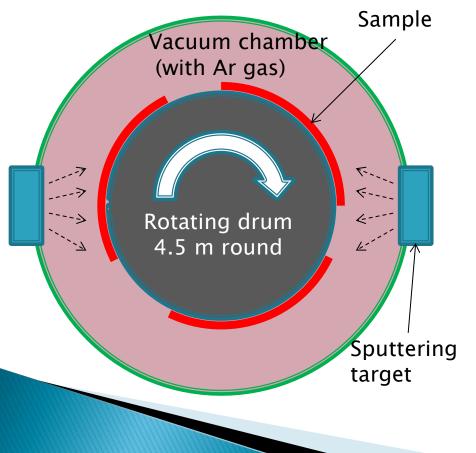
#### **Requirements for ATLAS NSW MM**


- High position resolution for one dimension
  - <100 µm for eta direction. (Resolution of a few cm is allowed for second coordinate.)
- Tolerant for high rate HIP particles
  - $\sim$  5kHz/cm<sup>2</sup>
- Resistive layer should be formed as strips
- Resistivity: ~20MΩ/cm
  - To protect from spark
- Mass production should be available, with large size (1m)
  - ~2000 board should be produced in half year.
- Low cost



#### Two option for resistive electrodes

- Screen printing
  - Already several prototypes (@ CERN and Japan) has been produced.
  - Made from carbon loaded polymer.
  - Large size (>1m<sup>2</sup>) is available
  - 400 µm pitch was available for MAMMA production.
- Sputtering with lift off process
  - New technique.
    - Just first two prototypes (10cm x 10cm MM) are available at June.
  - Fine pattern (~10µm) is available.
  - Large size (>1m<sup>2</sup>) is available in industrial facilities.
  - Production quality is very well.
    - It is not affected by production environment


### Liftoff process using sputtering



## Sputtering facilities

#### Large size sputtering is available

#### 4.5m x 1m for flexible film





A. Ochi, MM General Meeting 05/11/2013

### Prototype of small MicroMEGAS

#### • June, 2013

- > The readout board consists of
  - Readout strips (Rigid PCB).
  - Resistive strip foil (Polyimide film).
  - Fine strip pitch of 200 µm is formed on 25µm polyimide foil.
  - More fine structure will be available.
  - Surface resistivity: 1M/sq.
    - With 300Å carbon+50Å tungsten
  - Substrate thickness : 60 µm.
     (25µm polyimide & 35µm bonding film)
  - Mesh was formed by bulk MM technigue.

Resistive strips (sputtered) Pillar

**Readout strips** 



Rigid PCB (epoxy)

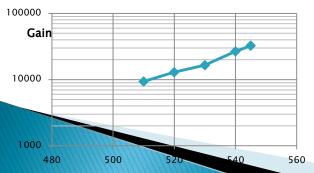
Carbon (300–600Å)

Tungsten (10–50Å)

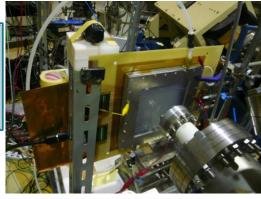
Substrate (polyimide)

200.00um

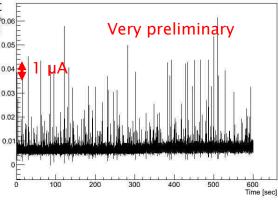
#### Fast neutron test $(2013/6/17 \rightarrow 23)$


-H∀ (~-300V)

Anode


Drift

= ~500V

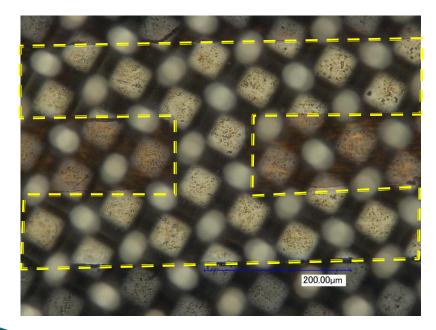

- The first beamtest for sputtering MPGD
- ▶ Gain curve of 5.9 keV X-ray.
  - Drift = -300V
  - Drift spacing: 5mm
  - Gas: Ar(93%) + CO2(7%)
- Fast Neutron test
  - Spark probability
  - @Kobe Univ.
    - 17-23 Jun. 2013
  - HV current log under intense neutron.
    - Neutron intense : ~ 10<sup>5</sup> cps/cm<sup>2</sup>.
    - 0.01V correspond to 1  $\mu$ A
    - ~600nA of base current was found while beam ON.

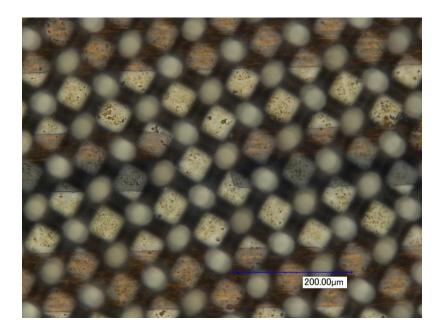




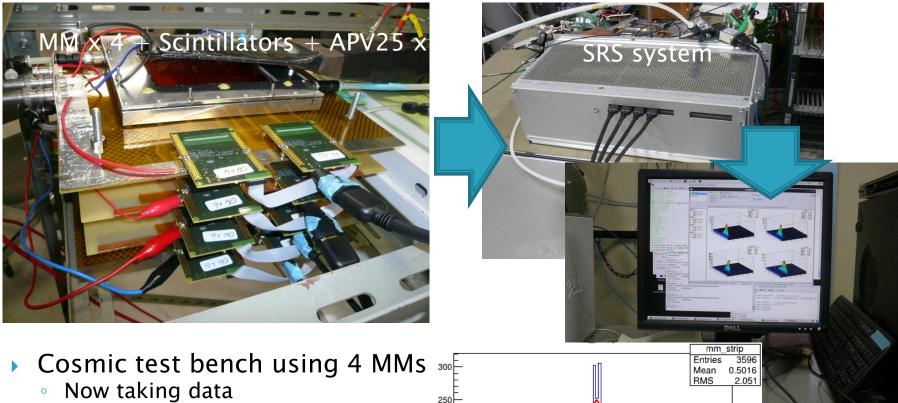


/Users/ochi/Documents/Work/mpgd/J4/current\_monitor/run231708.txt

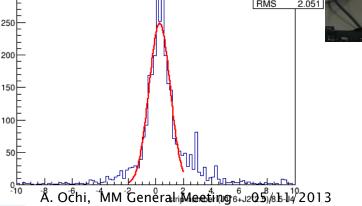




A. Ochi, MM General Meeting 05/11/2013

leutro


#### Before and after test

No destruction is observed on the resistive strips between before and after neutron test

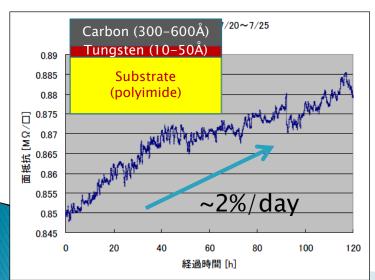




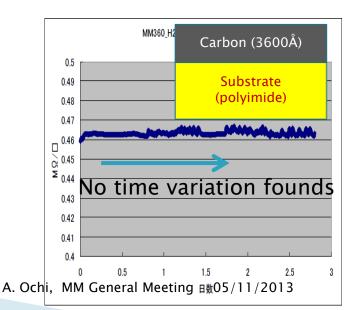

#### Cosmic test using 4 chambers



- More tune needed ...
- 2GeV electron beamtest is planed from 18<sup>th</sup> November
  - At Spring-8 BL33 beamline




## Further improvements and tests for carbon sputtering


- Requirements for carbon strips
  - Resistive control
    - 20  $M\Omega/cm$  is required
      - It correspond to  $600k\Omega/sq.$  (our first prototype has  $10M\Omega$  /sq.)
      - Thicker carbon sputter is required
    - Long time stability of resistivity
      - The resistivity of early prototypes were growing up as time goes on (~2%/day)
      - It was thought that the oxidation of metal (tungsten layer)
      - Is the carbon sputtering without metal layer possible?
  - Mechanical / chemical robustness test
    - Peeling off property (cross cut method)
    - Resistive stability against the bending of the foil
    - Chemical stabilities
      - For alkali and acid, used for PCB process.

### Thick carbon (only) sputtering

- Early prototype:
  - Tungsten (10–50Å) +Carbon (300–600Å)
  - Lower resistivity (<1MΩ/sq.) was available using thickness control of the metal.
  - Time variation founds (~2%/day) after several weeks from sputtering



- New prototype: (delivered at September)
  - Carbon only, 3600Å
  - Surface resistivity ~  $500k\Omega/sq$ .
  - No time variation founds after several days from sputtering



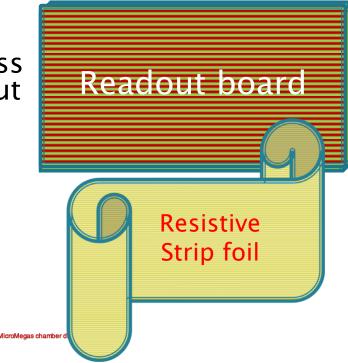
# Mechanical robustness for new sputtering carbon

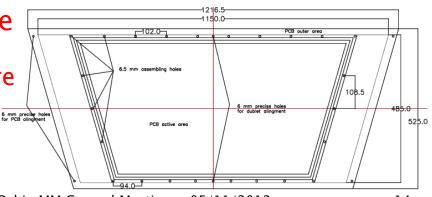
| •      | Adhesion test                                                                                 | Cross-cut test (JIS k5400-8.5)                   |
|--------|-----------------------------------------------------------------------------------------------|--------------------------------------------------|
|        | <ul> <li>Cross-cut test<br/>(JIS k5400-8.5 standard,<br/>similar to the ISO 2409)</li> </ul>  | Making cut lines as grid<br>(11 x 11, 1mm pitch) |
|        | <ul> <li>No peeled carbon founded</li> </ul>                                                  |                                                  |
|        | Bending test                                                                                  |                                                  |
|        | <ul> <li>Bending diameter &gt; 4cm</li> </ul>                                                 |                                                  |
|        | → No resistivity change found                                                                 | Tape up the foils strongly                       |
|        | <ul> <li>Jackknife bending</li> </ul>                                                         | Tape up the folis strongly                       |
|        | $\rightarrow$ Conductivity is lost                                                            |                                                  |
|        | • Bending diameter = $1.2$ cm<br>$\rightarrow$ Outer wrap: resistivity is increased $10-20\%$ |                                                  |
|        |                                                                                               |                                                  |
|        | $0.51 \text{M}\Omega/\text{sq.} \rightarrow 0.57 \text{M} \Omega/\text{sq.} (+12\%)$          | Peel off the tape at once                        |
|        | After bending                                                                                 |                                                  |
|        |                                                                                               |                                                  |
|        | Before bending                                                                                |                                                  |
|        | 0.475 0.05 1 1.5 2 2.5 3 0.53 0.65 1 1.5 2 2.5 3 3.5 4 45                                     | Observe the tape and foils.                      |
|        |                                                                                               |                                                  |
|        | $\rightarrow$ Inner wrap: no resistivity change                                               |                                                  |
|        | 45 C C C C C C C C C C C C C C C C C C C                                                      |                                                  |
|        | Before bending                                                                                |                                                  |
|        |                                                                                               |                                                  |
|        | $0.44M\Omega/sq.$                                                                             |                                                  |
|        |                                                                                               |                                                  |
|        |                                                                                               | hi, MM General Meeting 05/11/2013 12             |
| 111111 |                                                                                               |                                                  |

# Chemical robustness for new sputtering carbon

- Acid and alkali for PCB processing
  - Hydrochloric acid
  - Nitric acid
  - Sulfuric acid
  - Sodium carbonate
     → No damage on sputtered carbon
  - Sodium hydroxide
     → No damage for short dip
     → Peeling is found after 90 minutes dipping
- Almost all process of PCB production will not affect to the sputtering carbon




DECAPAGE ALUMINIUM


SOUDE CAUSTIQUE

GROUPE BASES

### Prototype of large MMs

- We can divide the production process of resistive strip from that of readout board.
  - Resistive strip is formed on thin foil
  - We don't need fine alignment between resistive strips and readout strips.
- Dividing those processes will make the yield of production growing up.
- We are preparing the large resistive strip foil.
  - Size of foils: 500mm x 1000mm
  - 4 foils are need for a quadruplet
- 8 Foils (4 foils and 4 spare) were delivered to us at 25<sup>th</sup> October.
  - Some basic resistive parameters are checked.
  - I brought them to CERN today.





A. Ochi, MM General Meeting 05/11/2013

#### For patterning process RAYTECH



#### PCB company

- They are expert for FPC (Flexible Printed Circuit) production.
- Liftoff is basic process for FPC production



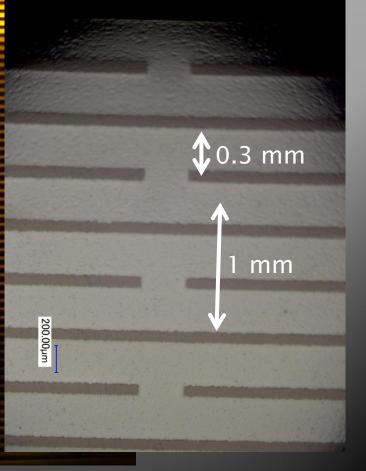
**Exposure machines** in clean room



**Electro forming machines** 

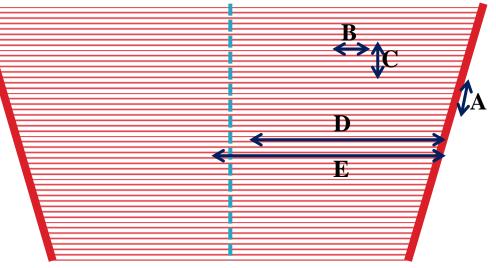


**Etching machines** 


#### Large resistive strip foil

866.4mm

#### 425.3mm


## Enlarged picture of resistive strip foil

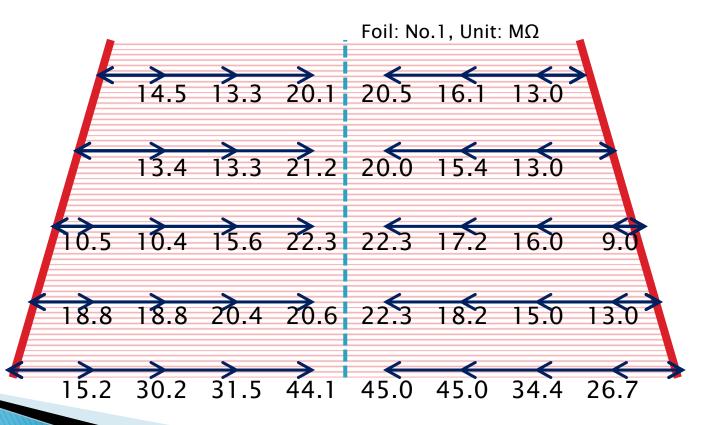
10 mm



### **Resistivity check**

- We have no systematic way for resistivity test yet, so these results are based on rough measurements.
- However, we have check surface resistivity on several points for 8 foils as figure.
- The prove has about 2cm width.
- Distance between proves are, A,B,C: 1.5-2.5 cm, D: 30 cm, E: cross over a center line.
- "Inf" means more than  $50M\Omega$ .




Unit: MΩ

| No. | А   | В   | С    | D   | E   |
|-----|-----|-----|------|-----|-----|
| 1   | 1.4 | 4   | 15   | 6   | Inf |
| 2   | 2.7 | 2.2 | 15   | 9.5 | Inf |
| 3   | 1.5 | 2.2 | 13.1 | 8.3 | Inf |
| 4   | 2.8 | 1.5 | 11   | 6.6 | Inf |
| 5   | 2.2 | 1.8 | 10.5 | 6.3 | Inf |
| 6   | 1.9 | 2.1 | 10   | 6.9 | Inf |
| 7   | 2.5 | 2.3 | 10.6 | 7.4 | Inf |
| 8   | 2.4 | 2.5 | 12.3 | 7.3 | Inf |

A. Ochi, MM General Meeting 05/11/2013

#### **Resistivity check from**

- Resistivity from edge to lattice point (10cm x 10cm) were measured.
- Prove shape is point like.



#### Conclusion

- Prototype of MicroMEGAS using sputtered resistive electrodes were produced and tested.
- It works as same as conventional resistive strip MicroMEGAS
  - Gain curve, operation in HIP were tested. It's OK.
  - We are checking position/timing properties.
- Carbon sputtering process is improved for ATLAS MicroMEGAS
  - Appropriate resistivity ~  $500k\Omega/sq$ .
  - Good mechanical/chemical properties
- Large resistive strip foils are produced for large quadruplet.
  - Qualitative resistivity check is ok.
  - Systematic check for QA is needed.